تعداد نشریات | 44 |
تعداد شمارهها | 1,323 |
تعداد مقالات | 16,270 |
تعداد مشاهده مقاله | 52,954,389 |
تعداد دریافت فایل اصل مقاله | 15,624,995 |
نقش ارزیابی چرخه حیات در بررسی تولید توان پایدار از بیودیزل: مطالعه موردی منطقه مغان | ||
مکانیزاسیون کشاورزی | ||
مقاله 3، دوره 9، شماره 3، مهر 1403، صفحه 33-48 اصل مقاله (922.97 K) | ||
شناسه دیجیتال (DOI): 10.22034/jam.2024.60685.1272 | ||
نویسندگان | ||
جواد طریقی* ؛ فرزاد ناصری؛ ابراهیم کلاهی | ||
گروه مهندسی بیوسیستم - دانشکده کشاورزی - دانشگاه محقق اردبیلی - اردبیل - ایران | ||
چکیده | ||
این مطالعه به نقش حیاتی ارزیابی چرخه حیات (LCA[1]) به عنوان یک روش جامع برای ارزیابی پایداری تولید توان حاصل از بیودیزل، با تمرکز موردی بر منطقه مغان انجام شده است. ارزیابی چرخه حیات تمام مراحل چرخه زندگی بیودیزل، از جمله تولید، توزیع و استفاده را در بر می گیرد و چشم اندازی کامل از تأثیرات زیست محیطی آن ارائه می دهد. این مطالعه از روشهایی مانند تجزیه و تحلیل از گهواره تا گور، محاسبه ردپای کربن و ارزیابیهای تاثیر مختلف برای اندازهگیری نتایج زیستمحیطی استفاده میکند. این مقاله ویژگیهای متمایز منطقه مغان را با توجه به شیوههای کشاورزی محلی، روشهای تولید بیودیزل از کلزا به عنوان محصول روغنی غالب در منطقه و روند مصرف انرژی بررسی میکند. نتایج نشان میدهد که استفاده از سوخت، پلاستیک و گاز در کشت کلزا بیشترین تأثیرات میانی (حدود ۵ الی ۲۵ درصد بالاتر از سایر نهاده ها) در منطقه مغان را دارد. علاوه بر این، مصرف الکتریسیته به طور قابل توجهی (حدود ۲۰۰ الی ۳۰۰ درصد بیشتر از سایر نهادهها) بر تأثیرات میانی در طول فرآیند استخراج روغن کلزا در منطقه مغان تأثیر می گذارد. ارزیابیها نشان میدهد که ورودیهای آب (به طور متوسط حدود ۳۰۰، ۳۵۰، ۲۵۰ و ۴۰۰ درصد بیشتر از روغن، سدیم هیدروکسید، هیدروکلریک اسید و متانول) و الکتریسیته (به طور متوسط حدود ۱۵۰، ۱۷۰، ۱۲۰ و ۲۰۰ درصد بیشتر از روغن، سدیم هیدروکسید، هیدروکلریک اسید و متانول) بیشترین سهم را در تأثیرات زیستمحیطی در مرحله تولید بیودیزل از روغن کلزا در منطقه بیودیزل می توانند داشته باشند. علاوه بر این، این مطالعه مشخص میکند که سوخت بیودیزل خود بیشترین تأثیر را بر شاخصهای میانی تولید الکتریسیته از بیودیزل مشتق شده از کلزا دارد. | ||
کلیدواژهها | ||
پایداری انرژی؛ تولید پایدار؛ روغن کلزا؛ زیست انرژی | ||
مراجع | ||
Al-Aseebee, M. D., Akol, A. M., Naje, A. S. J. E. E., & Technology, E. (2023). Performance Evaluation of Tractor Engine Using Waste Vegetable Oil Biodiesel for Agricultural Purpose. Environmental science & technology, 24(2). ttps://doi.org/10.12912/27197050/157100
Biswas, W. K., Barton, L., & Carter, D. (2011). Biodiesel production in a semiarid environment: a life cycle assessment approach. Environmental science & technology, 45(7), 3069-3074. https://doi.org/10.1021/es1031807
Bora, B. J., Sharma, P., Deepanraj, B., & Ağbulut, Ü. J. F. (2023). Investigations on a novel fuel water hyacinth biodiesel and Hydrogen-Powered engine in Dual-Fuel Model: Optimization with I-optimal design and desirability. 345, 128057. https://doi.org/10.1016/j.fuel.2023.128057
Chamkalani, A., Zendehboudi, S., Rezaei, N., Hawboldt, K. J. R., & Reviews, S. E. (2020). A critical review on life cycle analysis of algae biodiesel: current challenges and future prospects. 134, 110143. https://doi.org/10.1016/j.rser.2020.110143
Chaurasiya, S., & Singh, G. (2023). Life cycle assessment of nanocomposite manufactured using ultrasonic stir casting. Journal of Materials Science, 58(12), 5298-5318. https://doi.org/10.1007/s10853-023-08363-0
Dasan, Y. K., Lam, M. K., Yusup, S., Lim, J. W., & Lee, K. T. J. S. o. t. t. e. (2019). Life cycle evaluation of microalgae biofuels production: Effect of cultivation system on energy, carbon emission and cost balance analysis. 688, 112-128. https://doi.org/10.1016/j.scitotenv.2019.06.181
Fuentes, O. P., Cruz, J. C., Mignard, E., Sonnemann, G., & Osma, J. F. (2023). Life Cycle Assessment of Magnetite Production Using Microfluidic Devices: Moving from the Laboratory to Industrial Scale. ACS Sustainable Chemistry Engineering, 11(18), 6932-6943. https://doi.org/10.1021/acssuschemeng.2c0687
Garcia, R., Figueiredo, F., Brandão, M., Hegg, M., Castanheira, É., Malça, J., Nilsson, A., & Freire, F. (2020). A meta-analysis of the life cycle greenhouse gas balances of microalgae biodiesel. The International Journal of Life Cycle Assessment, 25, 1737-1748. https://doi.org/ 10.1007/s11367-020-01780-2
Gasol, C. M., Salvia, J., Serra, J., Antón, A., Sevigne, E., Rieradevall, J., & Gabarrell, X. (2012). A life cycle assessment of biodiesel production from winter rape grown in Southern Europe. Biomass and bioenergy, 40, 71-81. https://doi.org/10.1016/j.biombioe.2012.02.003
Ghosh, P., Sengupta, S., Singh, L., & Sahay, A. (2020). Life cycle assessment of waste-to-bioenergy processes: A review. Bioreactors, 105-122. https://doi.org/10.1016/B978-0-12-821264-6.00008-5
González-García, S., García-Rey, D., & Hospido, A. (2013). Environmental life cycle assessment for rapeseed-derived biodiesel. The International Journal of Life Cycle Assessment, 18, 61-76. https://doi.org/10.1007/s11367-012-0444-5
Gupta, R., McRoberts, R., Yu, Z., Smith, C., Sloan, W., & You, S. (2022). Life cycle assessment of biodiesel production from rapeseed oil: Influence of process parameters and scale. Bioresource Technology, 360, 127532. https://doi.org/10.1016/j.biortech.2022.127532
Hashemi-Nejhad, A., Najafi, B., Ardabili, S., Jafari, G., & Mosavi, A. (2023). The Effect of Biodiesel, Ethanol, and Water on the Performance and Emissions of a Dual-Fuel Diesel Engine with Natural Gas: Sustainable Energy Production through a Life Cycle Assessment Approach. International Journal of Energy Research, 2023. https://doi.org/10.1155/2023/4630828
Hashemi, F. (2021). Modeling and investigation of the life cycle of the hybrid power generation process from the diesel engine .Msc Thesis.University of Mohaghegh Ardabili.
Hashemi, F., Pourdarbani, R., Ardabili, S., & Hernandez-Hernandez, J. L. (2023). Life Cycle Assessment of a Hybrid Self-Power Diesel Engine. Acta Technologica Agriculturae, 26(1), 17-28. https://doi.org/10.2478/ata-2023-000
Hijazi, O., Abdelsalam, E., Samer, M., Attia, Y., Amer, B., Amer, M., Badr, M., & Bernhardt, H. J. R. E. (2020). Life cycle assessment of the use of nanomaterials in biogas production from anaerobic digestion of manure. 148, 417-424. https://doi.org/10.1016/j.renene.2019.10.048
Hnich, K. B., Martín-Gamboa, M., Khila, Z., Hajjaji, N., Dufour, J., & Iribarren, D. (2021).Life cycle sustainability assessment of synthetic fuels from date palm waste. Science of The Total Environment, 796, 148961. https://doi.org/10.1016/j.scitotenv.2021.14896
Hosseinzadeh-Bandbafha, H., Nazemi, F., Khounani, Z., Ghanavati, H., Shafiei, M., Karimi, K., Lam, S. S., Aghbashlo, M., & Tabatabaei, M. (2022). Safflower-based biorefinery producing a broad spectrum of biofuels and biochemicals: A life cycle assessment perspective. Science of The Total Environment, 802, 149842. https://doi.org/10.1016/j.scitotenv.2021.149842
Hosseinzadeh-Bandbafha, H., Nizami, A.-S., Kalogirou, S. A., Gupta, V. K., Park, Y.-K., Fallahi, A., Sulaiman, A., Ranjbari, M., Rahnama, H., & Aghbashlo, M. (2022). Environmental life cycle assessment of biodiesel production from waste cooking oil: A systematic review. Renewable and Sustainable Energy Reviews, 161, 112411 https://doi.org/10.1016/j.rser.2022.112411.
Jeswani, H. K., Chilvers, A., & Azapagic, A. (2020). Environmental sustainability of biofuels: a review. Proceedings of the Royal Society A, 476(2243), 20200351. https://doi.org/10.1098/rspa.2020.0351.
Mahmud, R., Moni, S. M., High, K., & Carbajales-Dale, M. (2021). Integration of techno-economic analysis and life cycle assessment for sustainable process design–A review. Journal of Cleaner Production, 317, 128247. https://doi.org/10.1016/j.jclepro.2021.128247
Malça, J., Coelho, A., & Freire, F. (2014). Environmental life-cycle assessment of rapeseed-based biodiesel: Alternative cultivation systems and locations. Applied energy, 114, 837-844. https://doi.org/10.1016/j.apenergy.2013.06.048
Merlo, S., Gabarrell Durany, X., Pedroso Tonon, A., & Rossi, S. (2021). Marine microalgae contribution to sustainable development. Water, 13(10), 1373. https://doi.org/10.3390/w13101373
Mizik, T., & Gyarmati, G. (2021). Economic and sustainability of biodiesel production—a systematic literature review. Clean Technologies, 3(1), 19-36. https://doi.org/10.3390/cleantechnol3010002
Moioli, S., Hijazi, O., Pellegrini, L. A., & Bernhardt, H. (2020). Simulation of different biogas upgrading processes and LCA for the selection of the best technology. 2020 ASABE Annual International Virtual Meeting. https://doi.org/10.13031/aim.202000500
Mortaza, M., Najafi, B., & Faizollahzadeh Ardabili, S. (2023). Production of biodiesel with waste cooking oil from a life cycle assessment perspective. Journal of Environmental Science Studies, 8(3), 6962-6967. https://doi.org/10.22034/jess.2022.346257.180
Puricelli, S., Cardellini, G., Casadei, S., Faedo, D., Van den Oever, A., & Grosso, M. (2021). A review on biofuels for light-duty vehicles in Europe. Renewable and Sustainable Energy Reviews, 137, 110398. https://doi.org/10.1016/j.rser.2020.110398
Puricelli, S., Costa, D., Rigamonti, L., Cardellini, G., Casadei, S., Koroma, M. S., Messagie, M., & Grosso, M. J. J. o. C. P. (2022). Life Cycle Assessment of innovative fuel blends for passenger cars with a spark-ignition engine: A comparative approach. 378, 13453. https://doi.org/10.1016/j.rser.2020.110398
Racz, L., Fozer, D., Nagy, T., Toth, A. J., Haaz, E., Tarjani, J. A., Andre, A., Selim, A., Valentinyi, N., & Mika, L. T. (2018). Extensive comparison of biodiesel production alternatives with life cycle, PESTLE and multi-criteria decision analyses. Clean Technologies and Environmental Policy, 20, 2013-2024. https://doi.org/10.1007/s10098-018-1527-1
Sajid, Z., Khan, F., & Zhang, Y. (2016). Process simulation and life cycle analysis of biodiesel production. Renewable energy, 85, 945-952. https://doi.org/ 10.1016/j.renene.2015.07.046
Saranraj, I., Ganesan, S., & Pandiyarajan, R. J. P. S. (2023). A tribological characteristics and experimental analysis of novel chlorella biodiesel blends on engine performance. 98(5), 055019. https://doi.org/10.1088/1402-4896/accabd
Saranya, G., Ramachandra, T. J. E. C., & X, M. (2020). Life cycle assessment of biodiesel from estuarine microalgae. 8, 100065. https://doi.org/10.1016/j.ecmx.2020.100065
Singh, A. D., Upadhyay, A., Shrivastava, S., & Vivekanand, V. J. B. t. (2020). Life-cycle assessment of sewage sludge-based large-scale biogas plant. 309, 123373. https://doi.org/10.1016/j.biortech.2020.123373
Singlitico, A., Goggins, J., & Monaghan, R. F. (2020). Life cycle assessment-based multiobjective optimisation of synthetic natural gas supply chain: A case study for the Republic of Ireland. Journal of Cleaner Production, 258, 120652. https://doi.org/ 10.1016/j.jclepro.2020.120652
Ubando, A. T., Ng, E. A. S., Chen, W.-H., Culaba, A. B., & Kwon, E. E. (2022). Life cycle assessment of microalgal biorefinery: A state-of-the-art review. Bioresource technology, 127615. https://doi.org/10.1016/j.biortech.2022.127615
Varling, A. S., Christensen, T. H., & Bisinella, V. J. W. M. (2023). Life cycle assessment of alternative biogas utilisations, including carbon capture and storage or utilisation. 157, 168-179. https://doi.org/10.1016/j.wasman.2022.12.005
Yaashikaa, P., Kumar, P. S., & Karishma, S. (2022). Bio-derived catalysts for production of biodiesel: A review on feedstock, oil extraction methodologies, reactors and lifecycle assessment of biodiesel. Fuel, 316, 123379. https://doi.org/10.1016/j.fuel.2022.123379
Zheng, B., Yu, S., Chen, Z., & Huo, Y.-X. (2022). A consolidated review of commercial-scale high-value products from lignocellulosic biomass. Frontiers in Microbiology, 13, 933882. https://doi.org/10.3389/fmicb.2022.933882 | ||
آمار تعداد مشاهده مقاله: 174 تعداد دریافت فایل اصل مقاله: 62 |