تعداد نشریات | 44 |
تعداد شمارهها | 1,303 |
تعداد مقالات | 16,035 |
تعداد مشاهده مقاله | 52,537,262 |
تعداد دریافت فایل اصل مقاله | 15,241,613 |
A Chebyshev Wavelet Approach to the Generalized Time-Fractional Burgers-Fisher Equation | ||
Computational Methods for Differential Equations | ||
مقالات آماده انتشار، پذیرفته شده، انتشار آنلاین از تاریخ 24 مهر 1403 اصل مقاله (2.66 M) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22034/cmde.2024.61020.2617 | ||
نویسنده | ||
Nasser Aghazadeh* | ||
1. Department of Mathematics, Azarbaijan Shahid Madani University, Tabriz, Iran. 2. Department of Mathematics, Izmir Institute of Technology, Izmir, Türkiye. | ||
چکیده | ||
This work proposes a new method for obtaining the approximate solution of the time fractional generalized Burgers-Fisher equation. The method's main idea is based on converting the nonlinear partial differential equation to a linear partial differential equation using the Picard iteration method. Then, the second kind Chebyshev wavelet collocation method is used to solve the linear equation obtained in the previous step. The technique is called the Chebyshev Wavelet Picard Method (CWPM). The proposed method successfully solves the time fractional generalized Burgers-Fisher equation. The obtained numerical results are compared with the exact solutions and with the solutions obtained using the Haar wavelet Picard method and homotopy perturbation method. | ||
کلیدواژهها | ||
Numerical methods for wavelets؛ Fractional partial differential equation؛ Fractional derivatives and integrals؛ Picard iteration technique؛ Sylvester equation | ||
آمار تعداد مشاهده مقاله: 81 تعداد دریافت فایل اصل مقاله: 101 |