تعداد نشریات | 44 |
تعداد شمارهها | 1,323 |
تعداد مقالات | 16,270 |
تعداد مشاهده مقاله | 52,954,439 |
تعداد دریافت فایل اصل مقاله | 15,625,023 |
NUMERICAL SOLVING OF MULTI- TERM TIME FRACTIONAL DIFFUSION-WAVE EQUATIONS USING SHIFTED GEGENBAUER SPECTRAL COLLOCATION METHOD | ||
Computational Methods for Differential Equations | ||
مقالات آماده انتشار، پذیرفته شده، انتشار آنلاین از تاریخ 18 مهر 1403 اصل مقاله (388.19 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22034/cmde.2024.61509.2660 | ||
نویسندگان | ||
Mahboubeh Molavi-Arabshahi* ؛ Jalil Rashidinia؛ Shiva Tanoomand | ||
School of Mathematics and Computer Science, Iran University of Science and Technology, Narmak, Tehran 16844, Iran. | ||
چکیده | ||
We introduce a numerical method to approximate the solution of the multi-term time fractional diffusion-wave equation (M-TFDWE). In this approach, First the solution is approximated by a sum of the shifted Gegenbauer polynomials (SGP) with unknown coefficients. Then, using the operational matrix of fractional integration and operational matrix of integer derivative based on SGPs, M-TFDWE reduces to a system of algebraic equations. The convergence analysis of the numerical approach is discussed. Finally, two examples are given to show the accuracy of the proposed method. | ||
کلیدواژهها | ||
Spectral collocation method؛ Shifted Gegenbauer polynomial؛ Time fractional diffusion wave equation | ||
آمار تعداد مشاهده مقاله: 71 تعداد دریافت فایل اصل مقاله: 193 |