تعداد نشریات | 44 |
تعداد شمارهها | 1,293 |
تعداد مقالات | 15,840 |
تعداد مشاهده مقاله | 52,054,313 |
تعداد دریافت فایل اصل مقاله | 14,842,586 |
On the wavelet Galerkin method for solving the fractional Fredholm integro-differential equations | ||
Computational Methods for Differential Equations | ||
مقالات آماده انتشار، پذیرفته شده، انتشار آنلاین از تاریخ 16 مهر 1403 اصل مقاله (1.3 M) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22034/cmde.2024.62193.2725 | ||
نویسندگان | ||
Sharareh Ranjbari1؛ Mahdi Baghmisheh* 1؛ Mohammad Jahangiri Rad1؛ Behzad Nemati Saray2 | ||
1Department of Mathematics, Tabriz Branch, Islamic Azad University, Tabriz, Iran. | ||
2Department of Mathematics, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran. | ||
چکیده | ||
An effective scheme is presented to estimate the numerical solution of fractional integro-differential equations (FIDEs). In the present method, to obtain the solution of the FIDEs, they must be first reduced to the corresponding Volterra-Fredholm integral equations (VFIEs) with the weakly singular kernel. Then, applying the matrix that represents the fractional integral (FI) based on biorthogonal Hermite cubic spline scaling bases (BHCSSb), and using the wavelet Galerkin method, the reduced problem can be solved. The combination of singularity and the challenge related to nonlinearity poses a formidable obstacle in solving the desired equations, but our method overcomes them well. Our investigation of the method convergence is provided, and it verifies that the convergence rate is $O(2^{-J})$ where $J\in \mathbb{N}_0$ is the refinement level. Convergence verification has also been done by presenting several numerical examples. Compared to other methods, it has been shown that the obtained results have better accuracy. | ||
کلیدواژهها | ||
Wavelet Galerkin method؛ Fractional integro-differential equation؛ Biorthogonal wavelet؛ Hermite cubic splines؛ Convergence analysis | ||
آمار تعداد مشاهده مقاله: 44 تعداد دریافت فایل اصل مقاله: 82 |