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Abstract

Of the various control measures available, lockdown is widely considered to be the most reliable method for

containing the spread of the Coronavirus. This study presents two mathematical models utilizing α-fractional
derivatives to investigate the significance of lockdown in reducing the spread of the virus. In this article, the entire

population is divided into four groups:

1) The first group comprises the susceptible population who are not under lockdown.
2) The second group consists of susceptible individuals who are under lockdown.

3) The third group comprises infected individuals who are not under lockdown.

4) The fourth group consists of infective individuals who are under lockdown.
One of the aforementioned methods examines this disease by generalizing the SEIR α-fractional derivatives.

The second model comprises five nonlinear differential equations of α-fractional order. In both methods, α =
(α1, · · · , αn), where 0 < αi ≤ 1 for every 1 ≤ i ≤ n. In other words, if T = (0, 1], then α ∈ Tn.
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1. Introduction

A pandemic is characterized by the widespread occurrence of an infectious disease, affecting a large geographic
area such as multiple continents or globally, and impacting a significant number of people. Diseases that are endemic
and prevalent, with a consistent number of cases over time, like seasonal influenza, are typically not classified as
pandemics since they occur in large regions simultaneously rather than spreading worldwide. Over the past 50,000 to
100,000 years, as human populations have increased and spread globally, new viral infectious diseases have emerged
[7]. In ancient times, when human settlements were small and isolated, epidemic diseases were rare. However, around
11,000 years ago, smallpox, caused by the variola virus, emerged among agricultural communities in India, eventually
becoming one of the deadliest viral infections in history [2].

The concept of quarantine, as it is understood today, originated in the 14th century as a measure to prevent the
spread of plague epidemics to coastal cities. Ships arriving in Venice from infected ports were required to anchor for
40 days before docking, a practice known as quarantine, derived from the Italian words ”quaranta giorni” meaning 40
days. The plague, caused by Yersinia pestis bacteria transmitted by fleas, has caused several pandemics throughout
history [11].

Moreover, the Caputo fractional order has been explored for its ability to model non-local behavior, potentially
offering advantages over integer-order models [1, 5, 6, 8, 9, 12, 14].

In a recent study by Khan et al. [5, 6], the α-fractional order model was examined to elucidate the interaction
between unknown hosts and bats, which has implications for understanding diseases’ origins, such as COVID-19.
Similarly, Yu et al. [14] developed a fractional time delay dynamics model to predict localized outbreaks of COVID-
19, while Xu et al. [13] proposed a generalized fractional-order SEIQRD model to forecast future outbreaks of
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infectious diseases, including COVID-19. Additionally, Shaikh et al. [10] utilized a model called Batshosts reservoir
people transmission fractional order COVID-19 to evaluate prevention measures, predict future outbreaks, and explore
control strategies.

Various models have been employed to analyze the dynamics of COVID-19, including predicting susceptible in-
dividuals in a population. However, to our knowledge, none have specifically assessed the effectiveness of targeted
lockdown measures, and most have utilized integer-order models.

This article is structured as follows:

(1) Section 2 provides preliminary definitions.
(2) In Section 3, we investigate the α-fractional order model for COVID-19.
(3) Section 4 discusses the non-negativity and boundedness of the model, as well as its uniqueness and existence.
(4) Section 5 focuses on the analysis and stability of the model, including the identification of possible fixed points

and local stability analysis.
(5) Section 6 presents numerical schemes and simulations used in the study.
(6) Finally, Section 7 presents the conclusions drawn from our analysis.

2. Preliminaries

Definition 2.1. Assume that α > 0 and ξ ∈ L([0, b],R), where [0, b] ⊂ R+. For functions in the Riemann-Liouville
sense, the fractional integral of order α is defined as

Iα0+ξ(t) =
1

Γ(α)

∫ t

0

(t− x)α−1ξ(x)dx, t > 0· (2.1)

Here, Γ(·) denotes the classical gamma function, given by

Γ(α) =

∫ ∞
0

xα−1 exp(−x)dx· (2.2)

Definition 2.2. Let ξ : [0, b] −→ R be a function. The Riemann-Liouville fractional derivative of order α ∈ R+ is
defined as follows

Dα
0+(ξ)(t) =

1

Γ(n− α)

dn

dtn

∫ t

0

ξ(x)

(t− x)α−n+1
dx, α ∈ [n− 1, n), n ∈ N· (2.3)

Definition 2.3. The Caputo fractional derivative of a function ξ : [0, b] −→ R of order α ∈ R+ is defined as follows

CDα
0+(ξ)(t) =

1

Γ(n− α)

∫ t

0

ξ(n)(x)

(t− x)α−n+1
dx, α ∈ [n− 1, n), n ∈ N· (2.4)

Riemann-Liouville and Caputo fractional derivatives are linear operators. However, most definitions of fractional
derivatives, such as the Riemann-Liouville and Caputo fractional derivatives, do not possess the intrinsic features of
the classical derivative. In 2014, R. Khalil presented a new definition of fractional derivatives, which encompasses all
the main features of the derivative and is called conformable fractional derivatives [4].

Definition 2.4. Conformable fractional derivative (CFD) of the function ξ : [0,∞) −→ R of order α ∈ [0,∞) at
a ∈ [0,∞) is defined as

Dαξ(a) = lim
h−→0

ξ(a+ ha1−α)− ξ(a)

h
· (2.5)

In this work, the set of x = (x1, · · · , xn) ∈ Rn for which xi > 0 for every i = 1, · · · , n, is denoted by Rn+. Let
T = [0, 1). Here and subsequently, Tn denotes the Cartesian product of n copies of T, denoted as T× T× · · · × T (n
times).
Let ACn(a, b) be the space of functions f which are absolutely continuous on [a, b]. For n ∈ N = {1, 2, 3, · · · }, the
space ACn(a, b) is the set of complex-valued functions f(X) which have continuous derivations up to order n− 1 on
[a, b] such that f (n−1)(x) ∈ ACn(a, b).
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Lemma 2.5. [3] Let α ∈ C and Re(α) > 0. Suppose ξ ∈ ACn(0, b) or ξ ∈ Cn(0, b). Then, we have

(Iα0+
CDα

0+ξ)(x) = ξ(x)−
n−1∑
k=0

ξ(k)(a)

k!
(x− a)k· (2.6)

In particular, if α ∈ T and ξ ∈ ACn(0, b) or ξ ∈ Cn(0, b), then

(Iα0+
CDα

0+ξ)(x) = ξ(x)− ξ(b)· (2.7)

Definition 2.6. Assume that Ψ : Rn+ −→ Rm be a multi-variable vector-valued function such that

Ψ(x1, ..., xn) = (Ψ1(x1, ..., xn), ...,Ψm(x1, ..., xn))

and α(t) ∈ Tn. Let f = (a1+h1δ(α1, a1)a1−α1
1 , ..., an+hnδ(αn, an)a1−αn

n ). Then the Ψ is α-differentiable at a ∈ Rn+

,
if there is a linear transformation L : Rn −→ Rm such that

lim
h→0

‖Ψ(f)−Ψ(a1, ..., an)− L(h)‖
‖h‖

= 0

where h = (h1, ..., hn) where δ(αi, a) is a function that may depend on αi and a. The linear transformation L is
denoted by Dα

δ Ψ(a) and called the CD of Ψ of order α ( α-derivative of Ψ) at a.

3. Mathematical model formulation

The total population is denoted as N(t). Since a complete and universal lockdown has not been implemented in
Iran. Therefore, the population is divided into four categories:

(1) The first category, represented by S(t), includes susceptible individuals not subjected to lockdown.
(2) The second category, denoted as SL(t), consists of susceptible individuals under lockdown.
(3) The third category, labeled as I(t), comprises infective individuals not under lockdown. Here, isolation serves

as a substitute for lockdown for simplicity.
(4) The fourth category, indicated by IL(t), encompasses infective individuals under lockdown.

We use L(t) to symbolize the cumulative density function of the lockdown program. The dynamics of
these population categories can be described by a system of α-fractional order differential equations, presented
below.

3.1. Parameters description. In this subsection, we introduce several key parameters related to α-fractional order,
supporting the analysis of the system.

(1) Recruitment is denoted by Λ.
(2) Infection contacts are represented by β.
(3) The imposition of lockdown on susceptible and infected individuals is defined by λ1 and λ2, respectively.
(4) Recovery rates for susceptible and infected individuals are denoted by γ1 and γ2, respectively.
(5) Death rates due to infection for susceptible and infected individuals are indicated by ν1 and ν2, respectively.
(6) The natural death rate is denoted by d.
(7) The rate of transfer of susceptible individuals from the lockdown class to the susceptible class is represented

by θ1.
(8) The rate of transfer of infected individuals from the lockdown class to the infected class is denoted by θ2.
(9) µ represents the rate of implementation of the lockdown program.

(10) φ signifies the rate of depletion of the lockdown program.
(11) η denotes the death rate within each subclass.
(12) The rate of interaction between susceptible and infected populations is represented by i.
(13) R symbolizes the rate of recovery in the four classes.
(14) The rate at which the exposed class completes its incubation period and enters the infected class is denoted

by ψ, while the removal or recovery rate of the infected class is represented by ω.
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Figure 1. Flowchart of the given SEIR model [3].

Type 1. SEIR α-fractional-order model. The susceptible-exposed-infected-remove (SEIR) α-fractional-order

model is obtained using the route
iSL(t)I(t)

N
as follows

Dα
0+S(t) =

iSL(t)I(t)

N
− ηS(t)− ψS(t),

Dα
0+SL(t) = Λ− ηSL(t)− iSL(t)I(t)

N
,

Dα
0+I(t) = ψS(t)− ηI(t)− ωI(t),

Dα
0+IL(t) = ωI(t)− ηIL(t),

(3.1)

where α = (α1), α1 ∈ T1, and T = (0, 1]. This model has the following non-negative initial conditions

S(0) = S∗ ≥ 0, SL(0) = S∗L ≥ 0, I(0) = I∗ ≥ 0, IL(0) = I∗L ≥ 0· (3.2)

Type 2. Model of α-fractional-order including lockdown for COVID-19. By employing the aforementioned
procedures for α = (α1, · · · , αn) ∈ Tn, αi ∈ T, and T = (0, 1], we obtain the following model

Dαi

0+S(t) = Λαt − βαiS(t)I(i)− λαi
1 S(t)L(t)− dαiS(t) + γαi

1 I(t) + γαi
2 IL(t) + θαi

1 SL(t),

Dαi

0+SL(t) = λαi
1 S(t)L(t)− dαiSL(t) + θαi

1 SL(t),

Dα
0+I(t) = βαiS(t)I(t)− γαi

1 I(t)− dαiI(t) + λαi
2 I(t)L(t) + θαi

2 IL(t)− ναi
1 I(t),

Dαi

0+IL(t) = λαi
2 I(t)L(t)− dαiIL(t) + θαi

2 IL(t)− γαi
2 IL(t)− ναi

2 IL(t),

Dαi

0+L(t) = µαiI(t)− φαiL(t)·

(3.3)

4. Establishing the non-negativity, boundedness, existence, and uniqueness of the model

4.1. Non-negativity and boundedness of the first proposed model. This subsection will provide confirmation
of the boundedness and positivity of the system (3.1) Figure 1. In Lemma 4.1, we demonstrate the positivity of the
model (3.1) Figure 1.
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Lemma 4.1. Suppose that Φ ⊂ R×Cn is an open set and that Υj ∈ C(Φ,R) for j = 1, 2, · · · . If Υj |xj(t)=0,X(t)∈Cn
0+
≥ 0

for every j = 1, · · · , n and Xt = (x1t, x2t, · · · , xnt)T , then the invariant domain of the equations

Dαi

0+xj(t) = Υj(t,Xt), t ≥ δ, j = 1, 2, · · · , n, (4.1)

is Cn0+{ϕ = (ϕ1, ϕ2, · · · , ϕn) : ϕ ∈ C([−ν, 0],Rn0+)}, where

Rn0+ = {(x1, x2, · · · , xn) : xj ≥ 0, j = 1, 2, · · · , n}· (4.2)

Proposition 4.2. The system (3.1) is invariant in R4
0+ .

Proof. We can obtain

Dα
0+X(t) = M(X(t)), X(0) = X0 ≥ 0, (4.3)

M(X(t)) = (M1(X),M2(X),M3(X),M4(X))T · (4.4)

by rewriting the system (3.1). It was observed that for α = (α1, · · · , αn), αi ∈ T, and T = (0, 1],
Dαi

0+S(t)|S=0 =
iSL(t)I(t)

SL(t) + I(t) + IL(t)
≥ 0,

Dαi

0+SL(t)|SL=0 = Λ ≥ 0,

Dαi

0+I(t)|I=0 = ψS(t) ≥ 0,

Dαi

0+IL(t)|IL=0 = ωI(t) ≥ 0·

(4.5)

Lemma 4.1 states that R4
0+ is an invariant set. �

Proposition 4.3. The system (3.1) is bounded in the region

Ω =

{
(S(t), SL(t), I(t), IL(t)) ∈ R4 : N(t) ≤ Λ

η

}
· (4.6)

Proof. The boundedness of the problem (3.1) can be confirmed by adding all equations of the system (3.1). Thus, the
result is obtained as follows

Dαi

0+N(t) = Λ− ηN(t), with N(0) = N0 ≥ 0· (4.7)

The solution of Equation (4.7) can be expressed in the form

N(t) ≤ N0 exp(−nt) +
Λ

η
(1− exp(−nt))· (4.8)

It is evident from Equation (4.8) that as t −→∞, N(t) ≤ Λ

η
. This implies that the feasible region for the given model

can be expressed as follows

Ω =

{
(S(t), SL(t), I(t), IL(t)) ∈ R4 : N(t) ≤ Λ

η

}
· (4.9)

Hence, the solution of the system (3.1) is bounded. �

4.2. Existence and uniqueness results for the second proposed model. In this section, the uniqueness and
existence of solutions for the proposed model will be discussed using fixed-point theorems.
The proposed model in Equation (3.3) can be simplified using the following formulation.
Let α = (α1, · · · , αn) and αi ∈ T, where T = (0, 1]. We have

Dαi

0+S(t) = G1(t, S(t), SL(t), I(t), IL(t), L(t)),

Dαi

0+SL(t) = G2(t, S(t), SL(t), I(t), IL(t), L(t)),

Dαi

0+I(t) = G3(t, S(t), SL(t), I(t), IL(t), L(t)),

Dαi

0+IL(t) = G4(t, S(t), SL(t), I(t), IL(t), L(t)),

Dαi

0+L(t) = G5(t, S(t), SL(t), I(t), IL(t), L(t)),

(4.10)
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where 

G1(t, S(t), SL(t), I(t), IL(t), L(t)) = Λαi − βαiS(t)I(t)− λαi
1 S(t)L(t)− dαiS(t) + γαi

1 I(t)

+γαi
2 IL(t) + θαi

1 SL(t),

G2(t, S(t), SL(t), I(t), IL(t), L(t)) = λαi
1 S(t)L(t)− dαiSL(t)− θαi

1 SL(t),

G3(t, S(t), SL(t), I(t), IL(t), L(t)) = βαiS(t)I(t)− γαi
1 I(t)− ναi

1 I(t)− dαiI(t) + λαi
2 I(t)L(t)

+θαi
2 L(t),

G4(t, S(t), SL(t), I(t), IL(t), L(t)) = λαi
2 I(t)L(t)− dαiIL(t)− θαi

2 IL(t)− γαi
2 IL(t)− ναi

2 IL(t),

G5(t, S(t), SL(t), I(t), IL(t), L(t)) = µαiI(t)− φαi ·

(4.11)

Therefore, the proposed model in Equation (3.3) can be formulated as follows{
Dαi

0 φ(t) = K(t, φ(t)), t ∈ J = [0, b], α = (α1, · · · , αn), 0 < αi ≤ 1,

φ(0) = φ0 ≥ 0·
(4.12)

On the condition that
φ(t) = (S(t), SL(t), I(t), IL(t), L(t))T ,

φ(0) = (S0, SL0
, I0, IL0

, L0)T

K(t, φ(t)) = (Gj(S(t), SL(t), I(t), IL(t), L(t)))T , j = 1, · · · , 5,
(4.13)

where (.)T denotes the transpose operation. Referring to Lemma 4.1, the integral corresponding to the stated issue in
(4.12), which is equal to model (4.12), is shown as follows

φ(t) = φ0 + Iαi

0+K(t, φ(t))

= φ0 +
1

Γ(αi)

∫ t

0

(t− x)αi−1K(x, φ(x))dx, α = (α1, · · · , αn), αi ∈ T, T = (0, 1],

φ(t) = φ0 + lim
h−→0

K
(

(x, φ(x)) + h(x, φ(x))1−αi

)
−K(x, φ(x))

h
· (4.14)

The Banach space E is defined as C([0, b],R), which consists of all continuous functions mapping from [0, b] to R.
The norm on E = C([0, b],R) is defined as follows

‖φ‖E = sup
t∈J
|φ(t)|, (4.15)

where

|φ(t)| = |S(t)|+ |SL(t)|+ |I(t)|+ |IL|+ |L(t)|, (4.16)

and S, SL, I, IL, L ∈ C([0, b],R).

Proposition 4.4. Assume that the function K ∈ C([J,R]) is required to map a bounded subset of J × R5 to subsets
that are relative to R. Also, there exists a constant LK > 0 such that

|K(t, φ1(t))−K(t, φ2(t))| ≤ LK|φ1(t)− φ2(t)|, (4.17)

for all t ∈ J and every φ1, φ2 ∈ C([J,R]).
Then, the problem (4.12), which is equivalent to the proposed model (3.3), has a unique solution provided that ΣLK < 1,
where

Σ =
bαi

Γ(αi + 1)
· (4.18)
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Proof. Assume that the operator P : E −→ E is defined as follows

(Pφ)(t) = φ0 +
1

Γ(αi)

∫ t

0

(t− x)αi−1K (x, φ(x)) dx·

Therefore

(Pφ)(t) = φ0 + lim
h−→0

K
(

(x, φ(x)) + h (x, φ(x))
1−αi

)
−K ((x, φ(x)))

h

Clearly, the operator P is well-defined and represents a unique solution of model (3.3), which is commonly referred to
as a fixed point of P .
In fact, it is assumed that supt∈J ‖K(t, 0)‖ = M1 and K ≥ ‖φ0‖+ ΣM1.
So, it is sufficient to indicate that PBK ⊂ BK , where the set BK = {φ ∈ E : ‖φ‖ ≤ K} is both closed and convex.
Now, for any φ ∈ BK, we have

|(Pφ)(t)| ≤ |φ0|+ lim
h−→0

(K ((x, φ(x)) + h (x, φ(x))
1−αi

)
−K ((x, φ(x)))

h

)

≤ φ0 + lim
h−→0

∣∣∣∣
[
K
(

(x, φ(x)) + h (x, φ(x))
1−αi

)
−K ((x, φ(x)))

]
h

−
[
K
(
(x, 0) + h(x, 0)1−αi)−K ((x, 0))

)]
h

∣∣∣∣+

∣∣∣∣K
(
(x, 0) + h(x, 0)1−αi

)
h

∣∣∣∣
≤ φ0 + Σ(LKK +M1) ≤ K· (4.19)

Hence, the outcomes follow. Additionally, for any given φ1, φ2 ∈ E, we obtain

|(Pφ1)(t)− (Pφ2)(t)| ≤ lim
h−→0

∣∣∣∣
[
K
(

(x, φ1(x)) + h (x, φ1(x))
1−αi

)
h

−
K ((x, φ1(x)))

]
h

−
(

lim
h−→0

∣∣∣∣
[
K
(

(x, φ2(x)) + h (x, φ2(x))
1−αi

)
h

−
K ((x, φ2(x)))

]
h

)∣∣∣∣
≤ LK lim

h−→0

∣∣∣∣
[
φ2(x+ hx1−αi)− φ2(x)

]
h

−

[
φ2(x+ hx1−αi)− φ2(x)

]
h

∣∣∣∣ ≤ ΣLK|φ1(t)− φ2(t)|, (4.20)

which implies that

‖(Pφ1)− (Pφ2)‖ ≤ ΣLK‖φ1 − φ2‖· (4.21)

Therefore, as a consequence of the Banach contraction, the proposed model (3.3) has a unique solution. �

Remark 4.5. To express the next lemma and theorem, the following assumption is required.
Assume that there exist δ1, δ2 ∈ E such that |K(t, φ(t))| ≤ δ1(t) + δ2|φ(t)| for any φ ∈ E and t ∈ J .
In which,

δ∗1 = sup
t∈J
|δ1(t)|, δ∗2 = sup

t∈J
|δ2(t)| < 1· (4.22)

Lemma 4.6. The operator P defined in (4.19) is completely continuous.
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Proof. Evidently, the continuity of the operator P is obtained from the continuity of the function K.
Thus, for any φ ∈ BK, as defined above, we have

|(Pφ)(t)| =

∣∣∣∣φ0 + lim
h−→0

K
(
(x, φ(x)) + h(x, φ(x))1−αi

)
−K (x, φ(x))

h

∣∣∣∣
≤ ‖φ0‖+ lim

h−→0

K
(
(x, φ(x)) + h(x, φ(x))1−αi

)
−K (x, φ(x))

h

= ‖φ0‖+
1

Γ(αi)

∫ t

0

(t− x)(αi)−1|K(x, φ(x))|dx

≤ ‖φ0‖+
(δ∗1 + δ∗2‖φ‖)

Γ(αi)

∫ t

0

(t− x)(αi)−1dx

≤ ‖φ0‖+
(δ∗1 + δ∗2‖φ‖)

Γ(αi)
b(αi) = ‖φ0‖Σ(δ∗1 + δ∗2‖φ‖) < +∞· (4.23)

As a result, it can be said that the operator P is uniformly bounded. Then, the equicontinuity of P will be proved.
To achieve this goal, we proceed as follows

sup
(t,φ)∈J×BK

|K(t, φ(t))| = K∗· (4.24)

Next, for every t1, t2 ∈ J where t2 ≥ t1, it follows that

|(Pφ)(t2)− (Pφ)(t1)| =
1

Γ(αi)

∣∣∣∣ ∫ t1

0

[
(t2 − x)(αi)−1 − (t1 − x)(αi)−1

]
K(x, φ(x))dx

+

∫ t2

t1

(t2 − x)(αi)−1K(x, φ(x))dx

∣∣∣∣ (4.25)

≤ K∗

Γ(αi)
[2(t2 − t1)(αi) + (t

(αi)
2 − t(αi)

1 )] −→ 0,

as t2 −→ t1. �

We can conclude that the operator P is equicontinuous and, consequently, relatively compact on BK. Therefore,
we can conclude that P is completely continuous as a result of the Arzela-Ascoli theorem.

Proposition 4.7. Let’s assume that the function K : J × R5 −→ R is a continuous function that satisfies the
assumption stated in (4.22). Therefore, the problem stated in (4.12), which is equivalent to the proposed model (3.3),
will have at least one solution.

Proof. A set has been defined as follows

U = {φ ∈ E : φ = ε(Pφ)(x), 0 < ε < 1} · (4.26)

Clearly, by considering Lemma 4.6, the operator P : U −→ E is completely continuous as defined in (4.19). Now, for
any φ ∈ U and leveraging the advantage of assumption (4.22), it is obtained that

|φ(t)| = |ε(Pφ)(t)|

≤ |φ0|+ lim
h−→0

∣∣∣∣
[
K
(
(x, φ(x)) + h(x, φ(x))1−αi

) ]
h

− K((x, φ(x)))

h

∣∣∣∣
= |φ0|+

1

Γ(αi)

∫ t

0

(t− x)αi−1|K(x, φ(x))|dx ≤ ‖φ0‖+
(δ∗1 + δ∗2‖φ‖)

Γ(αi + 1)
bαi

= ‖φ0‖+ Σ(δ∗1 + δ∗2‖φ‖) < +∞· (4.27)

�
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Therefore, the related set U is bounded. Thus, the operator P possesses at least one fixed point, which can be
considered as the solution of the proposed model (3.3). As a result, this is the desired outcome.

5. Analysis and stability result

This section comprises two parts. The first part includes the possible fixed point and an analysis of the local
stability concerning the suggested model (3.1) Figure 1.
The second part involves the derivation of the stability of the proposed model (3.3).

5.1. Equilibrium points, basic reproduction number and local stability analysis. In this section, a possible
fixed point of the model (3.1) will be derived. Two feasible equilibrium points have been calculated. The first
equilibrium point is associated with the disease-free equilibrium (DFE), and the second equilibrium point is the
endemic equilibrium (EE).

lim
h−→0

‖S(t+ ha1−αi − S(a))‖
‖h‖

= lim
h−→0

‖Sl(t+ ha1−αi − SL(a))‖
‖h‖

=

lim
h−→0

‖I(t+ ha1−αi − I(a))‖
‖h‖

= lim
h−→0

‖IL(t+ ha1−αi − IL(a))‖
‖h‖

= 0,

⇒ Dαi

0+S(t) = Dαi

0+SL(t) = Dαi

0+I(t) = Dαi

0+IL(t)· (5.1)

By using Equation (5.1), the model (3.1) takes the following form

jSL(t)I(t)

N
− ηS(t)− ψS(t) = 0,

Λ− ηSL(t)− jSL(t)I(t)

N
= 0,

ψS(t)− ηI(t)− ωI(t) = 0,

ωI(t)− ηIL(t) = 0·

(5.2)

From the state system (5.2), we can deduce the following:
By assuming S(t) = I(t) = Il(t) = 0, it can be stated that:

ψDFE = (S0
L, S

0, I0, I0L) = (
ΛL
ηL

, 0, 0, 0), (5.3)

ψEE = (S∗L, S
∗, I∗, I∗L)· (5.4)

The basic reproduction number R0 is evaluated as

R0 =
jψ

(η + ψ)(η + ω)
· (5.5)

Result 5.1. The DFEψ0 of the system (3.1) is locally asymptotically stable if R0 < 1.

5.2. Stability results. Here, the stability properties of the proposed model (3.3) will be derived in two well-known
frameworks, namely the Ulam-Hyers stability and the stability of the extended Ulam-Hyers. The concept of Ulam
stability was defined and considered by Ulam [8].
As stability is crucial for approximate solutions, nonlinear functional analysis has been employed to analyze both the
Ulam-Hyers stability and the extended stability of the proposed model (3.3). Therefore, the explanations presented
in the following part are necessary.

Definition 5.2. Let ε > 0, and consider the inequality

|Dαi

0+ φ̄(t)−K(t, φ̄(t))| ≤ ε, t ∈ J, (5.6)

where ε = max(εj)
T , j = 1, · · · , 5.
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Definition 5.3. The proposed problem (4.12), which is equivalent to the model (3.3), is Ulam-Hyers stable if CK > 0
and the function ϕK : R+ → R+ is such that ϕK(0) = 0. For any ε > 0 and for each solution φ̄ ∈ E satisfying the
inequality (5.6), there exists a solution φ ∈ E of the problem (4.12) such that

|φ̄(t)− φ(t)| ≤ CKε, t ∈ J, (5.7)

where CK = max(CKi
)T , and

|φ̄(t)− φ(t)| ≤ ϕKε, t ∈ J, (5.8)

where ϕK = max(ϕKi
)T .

Remark 5.4. A function φ̄ ∈ E is a solution of the given inequality (5.6) if and only if there exists a function that
satisfies the following conditions

(1) |h(t)| ≤ ε, h = max(hj)
T , t ∈ J,

(2) Dαi

0+ φ̄(t) = K(t, φ̄(t)) + h(t), t ∈ J .

Lemma 5.5. Assuming that φ̄ ∈ E satisfies the inequality (5.6), then φ̄ satisfies the integral inequality described by

∣∣∣∣φ̄(t)− φ̄0 − lim
h−→0

[[K ((x, φ̄(x)) + h(x, φ̄(x))1−αi
) ]

h
− K((x, φ̄(x)))

h

]∣∣∣∣ ≤ Σε· (5.9)

Proof. With reference to item (2) of Remark 5.4, we have

Dα
0+ φ̄(t) = K(t, φ̄(t)) + h(t), t ∈ J ·, (5.10)

and according to Lemma 2.5, it follows that:

φ̄(t) = φ̄0 + lim
h−→0

[
K((x, φ̄(x)) + h(x, φ̄(x))1−αi)

h
− K((x, φ̄(x)))

h

]
+ lim
k−→0

h(x+ kx1−αi)

k
· (5.11)

The following relation is obtained by using item (1) of Remark 5.4.∣∣∣∣φ̄(t)−φ̄0− lim
h−→0

[K ((x, φ̄(x)) + h(x, φ̄(x))1−αi
)

h
−K((x, φ̄(x)))

h

]∣∣∣∣ ≤ lim
k−→0

|h(x+ kx1−αi)− h(x)|
k

≤ Σε· (5.12)

Hence, the expected results are obtained. �

Theorem 5.6. Suppose that K : J × R5 −→ R is continuous for every φ ∈ E, and assumption (4.17) holds with
1− ΣLK > 0.

|φ̄(t)− φ(t)| = max
t∈j

∣∣∣∣φ̄(t)− φ̄0 − lim
h−→0

[K ((x, φ(x)) + h(x, φ(x))1−αi
)

h
− K((x, φ(x)))

h

]∣∣∣∣
≤ max

t∈j

∣∣∣∣φ̄(t)− φ̄0 − lim
h−→0

[K ((x, φ̄(x)) + h(x, φ̄(x))1−αi
)

h
− K((x, φ̄(x)))

h

]∣∣∣∣
+ max

t∈j
lim
h−→0

[∣∣∣∣[K ((x, φ̄(x)) + h(x, φ̄(x))1−αi
) ]∣∣∣∣

h
− K[(x, φ̄(x))]

h

]
−

[K ((x, φ(x)) + h(x, φ(x))1−αi
)

h
− K((x, φ(x)))

h

]
≤

∣∣∣∣φ(t)− φ̄0 − lim
h−→0

[K ((x, φ̄(x)) + h(x, φ̄(x))1−αi
)

h
− K((x, φ̄(x)))

h

]∣∣∣∣
+ LK lim

h−→0

∣∣∣∣ [φ̄(x+ hx1−αi)]

h

− [φ(x+ hx1−αi , )− φ(x)]

h

∣∣∣∣ ≤ Σε+ ΣLK|φ̄(t)− φ(t)|· (5.13)
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Therefore,

∣∣∣∣|φ̄− φ|∣∣∣∣ ≤ CKε, where CK =
Σ

1− ΣLK
.

By setting ϕK(ε) = CKε, such that ϕK(0) = 0, it can be concluded that the proposed problem (3.3) is stable in both
the Ulam-Hyers framework and the generalized Ulam-Hyers framework.

6. Numerical scheme and simulations

In this section, the numerical simulation of the fractional variant for the current model, investigated utilizing the
α-fractional operator, has been conducted using first-order convergent numerical techniques.

We consider the following fractional variant of the model.
∗Dαi

0,x(y(t)) = g(y(t)), αi ∈ (0, 1), α = (α1, · · · , αn), x ∈ [0, T ], y(0) = y0, (6.1)

where y = (a, b, c, w) ∈ R4
+ is a real-valued continuous vector function that satisfies the Lipschitz criterion as follows:

‖g(y1(t))− g(y2(t))‖ ≤M‖(y1(t))− (y2(t))‖, (6.2)

where M is a positive real Lipschitz constant.
By utilizing the α-fractional-order integral operators, we obtain

y(t) = y0 + Iαi
0,x(y(t)), αi ∈ (0, 1), α = (α1, · · · , αn), x ∈ [0, T ]· (6.3)

Here, Iαi0, x represents the α-fractional-order integral operator. Equi-spaced integration intervals over [0, T ] with a

fixed step size h =
T

n
, where n ∈ N, will be considered. For the simulation, a step size of h = 10−2 is utilized.

It is assumed that yq represents the approximated form of y(t) at x = xq for q = 0, 1, · · · , n.
In the following equation, a numerical approach has been evaluated to govern the model for the α-fractional derivative
operator.

cSp+1 = a0 +
hαi

Γ(αi + 1)
×

p∑
k=0

((p− k + 1)αi − (p− k)αi)(Λ− βS(t)I(t)− λ1S(t)L(t)− dS(t)

+ γ1I(t) + γ2IL(t) + θ1SL(t)),

cSLp+1 = b0 +
hαi

Γ(αi + 1)
×

p∑
k=0

((p− k + 1)αi − (p− k)αi)(λ1S(t)L(t)− dSL(t)− θ1SL(t)),

cIp+1 = d0 +
hαi

Γ(αi + 1)
×

p∑
k=0

((p− k + 1)αi − (p− k)αi)(βS(t)I − γ1I(t)− ν1I(t)− dI(t)

+ λ2I(t)L(t) + θ2IL(t)),

cILp+1 = e0 +
hαi

Γ(αi + 1)
×

p∑
k=0

((p− k + 1)αi − (p− k)αi)(λ2I(t)L(t)− dIL(t)− θ2IL(t)

− γ2IL(t)− ν2IL(t)),

cLp+1 = d0 +
hαi

Γ(αi + 1)
×

p∑
k=0

((p− k + 1)αi − (p− k)αi)(µI(t)− φL(t))· (6.4)

Now, the numerical results obtained from the governing model will be discussed in relation to the approximate solutions.
The α-fractional operator has been utilized to achieve this objective. The following are the initial conditions for the
problem.

S(0) = 900, SL(0) = 300, I(0) = 300, IL(0) = 497, L(0) = 200, (6.5)

and

α1 = 0.16, α2 = 0.22, α3 = 0.33, α4 = 0.76, α5 = 0.89· (6.6)

In Table 1, the parameter values are displayed. Figure 2 shows the dynamical and representative view of each variable
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Table 1. Details of parameter values.

parameters α1 = 0.16/values α2 = 0.22/values α3 = 0.33/values α4 = 0.76/values α5 = 0.89/values
Λ 1600 1200 800 400 276
β 0.000068 0.000051 0.000034 0.000017 0.0000114
λ1 0.0008 0.0006 0.0004 0.0002 0.00013
λ2 0.0008 0.0006 0.0004 0.0002 0.00013
ν1 0.131 0.09825 0.0655 0.03275 0.02183
ν2 0.131 0.09825 0.0655 0.03275 0.02183
d 0.0384 0.0288 0.0192 0.0096 0.0064
θ1 0.8 0.6 0.4 0.2 0.13
θ2 0.8 0.6 0.4 0.2 0.13
µ 0.002 0.0015 0.001 0.0005 0.00033
φ 0.24 0.18 0.12 0.06 0.04
γ1 0.67916 0.50937 0.33958 0.16979 0.11319
γ2 0.67916 0.50937 0.33958 0.16979 0.11319

Figure 2. Dynamical outlook of the susceptible class that is n’t under lockdown and susceptible
class that is under lockdown with different α-fractional-order values.

for various α-fractional order values. In the plots depicted below, the susceptible class, S(t), indicates the behavior
of increment and decrement. It is also noteworthy that lower values of α lead to a diminishing decreasing rate and
an increasing rate that becomes higher. With the same values as those seen in the following Figure 3, the susceptible
class under lockdown, SL(t), also exhibits increasing-decreasing behavior with lower values of α. Furthermore, the
decreasing rate also begins to disappear. In Figure 4 below, the infected class, denoted as I(t), exhibits a noticeable
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Figure 3. Dynamical outlook of the infective class that isn’t under lockdown and infective class
those are under lockdown with different α-fractional-order values.

increasing-decreasing pattern. As lower fractional-order values are employed, the class achieves complete stability.
In the figure depicted below, the infected class under lockdown, IL(t), maintains a distinct increasing-decreasing

pattern. However, it is noteworthy that the class is likely at risk.
In the plots below, the dynamic outlook of the population under lockdown, L(t), is illustrated. An increasing

behavior is observed. There seems to be a strong trend in this case, which may be associated with the risks concerning
the class. With many individuals infected under lockdown, including both asymptomatic and symptomatic cases, there
could be an increase in the death rate, resulting in a significant decrease in the number of people under lockdown.

7. Conclusions

In conclusion, we have investigated a system of nonlinear fractional-order equations within the framework of α-
fractional calculus to evaluate the effectiveness of lockdown measures in mitigating the spread of Coronavirus. The
uniqueness and existence of solutions for the proposed Coronavirus model under lockdown were established using fixed-
point theorems such as Schauder and Banach. Stability analysis was conducted using the Ulam-Hyers and extended
Ulam-Hyers frameworks. Additionally, numerical simulations of the fractional variant of the model were performed
utilizing fractional operators. The simulations employed the method of fractional Euler, a first-order convergent
numerical technique. The behavior and dynamics of each variable were explored across different fractional-order
values.

Our study reveals that the depiction and dynamic behavior of each variable vary significantly with changes in
α-fractional order values. Specifically:

(1) The susceptible class, S(t), displays an oscillatory pattern of increase and decrease. Notably, at lower values
of α, the rate of decrease diminishes, while the rate of increase intensifies.



Unco
rre

cte
d Pro

of

14 AKBAR DEHGHAN NEZHAD AND AREZOO MOSLEMI GHADIKOLAEI

Figure 4. Dynamical outlook of the commutative density of the lockdown class with different α-
fractional-order values.

(2) The susceptible class under lockdown, SL(t), also exhibits oscillatory behavior, with a diminishing rate of
decrease observed at lower fractional-order values.

(3) The infected class, I(t), demonstrates a similar oscillatory pattern, with lower fractional-order values leading
to greater stability in the class dynamics.

(4) The infected class under lockdown, IL(t), maintains an oscillatory pattern similar to I(t), but with an increased
risk observed, particularly at lower fractional-order values.

Overall, our findings underscore the nuanced impact of fractional-order values on the dynamics of the Corona-
virus model under lockdown, highlighting the importance of considering such factors in assessing disease containment
strategies.
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