| تعداد نشریات | 45 |
| تعداد شمارهها | 1,436 |
| تعداد مقالات | 17,675 |
| تعداد مشاهده مقاله | 57,748,773 |
| تعداد دریافت فایل اصل مقاله | 19,411,991 |
کنترل پیشبین تحملپذیر عیب دادهمحور با قانون تطبیق برخط مبتنی بر تجزیه به مُدهای دینامیکی | ||
| مجله مهندسی برق دانشگاه تبریز | ||
| مقالات آماده انتشار، اصلاح شده برای چاپ، انتشار آنلاین از تاریخ 07 مهر 1403 اصل مقاله (918.78 K) | ||
| نوع مقاله: علمی-پژوهشی | ||
| شناسه دیجیتال (DOI): 10.22034/tjee.2024.61220.4832 | ||
| نویسندگان | ||
| محمد حسین بختیاری دوست1؛ میثم یادگار* 2؛ محمد هادی رضایی3 | ||
| 1دانشجوی کارشناسی ارشد، دانشکده مهندسی برق و کامپیوتر، دانشگاه صنعتی قم، قم، ایران | ||
| 2دانشیار، دانشکده مهندسی برق و کامپیوتر، دانشگاه صنعتی قم، قم، ایران | ||
| 3استادیار، دانشکده مهندسی برق ، دانشگاه یزد، یزد، ایران | ||
| چکیده | ||
| در این مقاله یک روش کنترل داده محور برای سیستمهای دینامیکی خطی چند ورودی– چند خروجی برای مقابله با عیب ارائه شده است. در این روش کنترل تحمل پذیر عیب، یک عملگر مجازی بر مبنای کنترل پیشبین و با استفاده از مدل تطبیقی استخراج شده از مُدهای دینامیکی سیستم، طراحی شده است. این مدل استخراج شده، به صورت بازگشتی بهروز و به منظور پیشبینی حالات سیستم معیوب استفاده شده است. این روش، اثر عیب در پیشبینیهای کنترلکننده پیشبین درنظر گرفته و توسط کنترلکننده کمینه شده است. در این روش نیازی به دانستن معادلات نیست و از آنجایی که در این روش از کنترلکننده پیشبین برای بهبود عملکرد سیستم در مواجهه با عیب استفاده شده است، توانایی اعمال محدودیت بر روی ورودیهای کنترلی وجود دارد. همچنین روش ارائه شده در این مقاله بر مبنای عملگر مجازی طراحی شده است و به راحتی میتواند به سیستمهای حلقه بسته به منظور بهبود عملکرد این سیستمها در مواجهه با عیب اضافه شود. در نهایت، عملکرد روش کنترلی ارائه شده در قالب یک مثال شبیهسازی مورد بررسی قرار گرفته است. | ||
| کلیدواژهها | ||
| کنترل تحمل پذیر عیب؛ تجزیه به مُدهای دینامیکی؛ کنترل مدل پیشبین؛ کنترل داده محور؛ عملگر مجازی | ||
| مراجع | ||
|
[1] S. Ding, "Advanced methods for fault diagnosis and fault- tolerant control." Springer Berlin Heidelberg, 2021. [2] H. Alwi, C. Edwards, C.P. Tan. Fault detection and fault- tolerant control using sliding modes. London: Springer, 2011. [3] P. Nowak, A. Milecki, "Review of fault-tolerant control systems used in robotic manipulators," Applied Sciences, vol. 13, no. 4, p.2675, 2023. [4] V. Mien and D. Ceglarek, , "Robust fault-tolerant control of robot manipulators with global fixed-time convergence," Journal of the Franklin Institute, vol. 358, pp. 699--722, 2021. [5] X. Wang, Z. Fei, Z. Wang, and X. Liu, "Event-triggered fault estimation and fault-tolerant control for networked control systems," Journal of the Franklin Institute, vol. 356, no. 8, pp. 4420--4441, 2019. [6] F. Albalawi, H. Durand, and PD. Christofides, "Process operational safety using model predictive control based on a process Safeness Index," Computers & Chemical Engineering, vol. 104, pp. 76--88, 2017. [7] D. Xue , NH. El-Farra, , "Forecast-triggered model predictive control of constrained nonlinear processes with control actuator faults," Mathematics, vol. 6, no. 6, p. 104, 2018. [8] R. Wang, X. Li, Y. Liu, W. Fu, S. Liu, X. Ma, "Multiple model predictive functional control for marine diesel engine," Mathematical Problems in Engineering, pp. 1--20, 2018. [9] L. Liu, K. Shi, X. Yuan, Q. Li, "Multiple model-based fault-tolerant control system for distributed drive electric vehicle," Journal of the Brazilian Society of Mechanical Sciences and Engineering, vol. 41, pp. 1--15, 2019. [10] M. Naderi, TA. Johansen, AK. Sedigh, "A fault-tolerant control scheme using the feasible constrained control allocation strategy," International Journal of Automation and Computing, vol. 16, pp. 628--643, 2019. [11] R. Bavili, A. Mohammadzadeh, J. Tavoosi, S. Mobayen, W. Assawinchaichote, JH. Asad, AH. Mosavi, "A New Active Fault Tolerant Control System: Predictive Online Fault Estimation," IEEE Access, vol. 9, pp. 118461--118471, 2021. [12] K. Ghanbarpour, F. Bayat, and A. Jalilvand, "Dependable power extraction in wind turbines using model predictive fault-tolerant control," International Journal of Electrical Power & Energy Systems, vol. 118, p. 105802, 2020. [13] M. Yadegar and N. Meskin, "Fault-Tolerant Control of One-Sided Lipschitz Nonlinear Systems," IEEE Control Systems Letters, vol. 6, pp. 1460--1465, 2021. [14] M. Yadegar, N. Meskin, and Ahmad Afshar, "Fault-tolerant control of linear systems using adaptive virtual actuator," International Journal of Control, vol. 92, no. 8, pp. 1729--1741, 2019. [15] M. Yadegar, A. Afshar, and N. Meskin, "Fault-tolerant control of non-linear systems based on adaptive virtual actuator," IET Control Theory & Applications, vol. 11, no. 9, pp. 1371--1379, 2017. [16] I. Bessa, V.Puig, and R. Palhares, "Reconfiguration block and fault hiding: Design, applications, and challenges," Annual Reviews in Control, p. 100896, 2023. [17] J. Richter, Reconfigurable control of nonlinear dynamical systems: a fault-hiding approach.: Springer, 2011. [18] H. Dai, P. Chen, and H. Yang, "Metalearning-Based Fault- Tolerant Control for Skid Steering Vehicles under Actuator Fault Conditions," Sensors, vol. 22, no. 3, pp. 1424-8220, 2022. [19] M. Yadegar, M. Bakhtiaridoust, and N. Meskin, "Adaptive data- driven fault-tolerant control for nonlinear systems: Koopman- based virtual actuator approach," Journal of the Franklin Institute, vol. 360, no. 11, pp. 7128-7147, 2023. [20] Z. Karimi, Y. Batmani, M. Khosrowjerdi, and C. Konstantinou, "Data-Driven Fault-Tolerant Tracking Control for Linear Parameter-Varying Systems," IEEE Access, vol. 10, pp. 66734-66742, 2022. [21] X. Li, Q. Luo, L. Wang, R. Zhang, and F. Gao,, "Off-policy reinforcement learning-based novel model-free minmax fault-tolerant tracking control for industrial processes," Journal of Process Control, vol. 115, pp. 145-156, 2022. [22] M. Bakhtiaridoust, M. Yadegar, and F. Jahangiri, "Koopman fault-tolerant model predictive control," IET Control Theory & Applications, pp. 1-12, 2024. [23] H. Fan, J. Han, and B. Wang, "Data-driven fault-tolerant control for SISO nonlinear system with unknown sensor fault," International Journal of Robust and Nonlinear Control, vol. 33, no. 6, pp. 3677--3698, 2023. [24] B. Rouabah , H. Toubakh , M. Kafi, M. Sayed-Mouchaweh, "Adaptive data-driven fault-tolerant control strategy for optimal power extraction in presence of broken rotor bars in wind turbine," ISA transactions, vol. 130, pp. 92-103, 2022. [25] D. Zheng, X. Xu, and D. Lin, "Data-driven fault-tolerant control for unmanned aerial vehicles without using identification model," Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, vol. 236, pp. 1-10, 2022. [26] Y. Wang, Z. Wang, "IEEE Transactions on Circuits and Systems II: Express Briefs," Data-Driven Model-Free Adaptive Fault-Tolerant Control for a Class of Discrete-Time Systems, vol. 69, no. 1, pp. 154-158, 2022. [27] J. Zheng and Z. Hou, "Model Free Adaptive Iterative Learning Control Based Fault-Tolerant Control for Subway Train With Speed Sensor Fault and Over-Speed Protection," IEEE Transactions on Automation Science and Engineering, vol. 21, no. 1, pp. 168-180, 2024. [28] K. Jiang, M. Kheradmandi, C. Hu, S. Pal, and Y. Fengjun, "Data-driven fault-tolerant predictive control for temperature regulation in data center with rack-based cooling architecture," Mechatronics, vol. 79, no. 0957-4158, p. 102633, 2021. [29] M. Najjar, M. H. Moattar, Network Intrusion Detection using a Hybrid of Hidden Markov Model and Extreme Learning Machine. TABRIZ JOURNAL OF ELECTRICAL ENGINEERING, 2019; 48(4): 1807-1817. [30] A. Khodadadi, M. Shahriari-kahkeshi, A. Chatraei, A Novel Scheme for Actuator Fault Tolerant Controller Design based on the Fault Identification. TABRIZ JOURNAL OF ELECTRICAL ENGINEERING, 2018; 48(2): 595-608. [31] M. bakhtiaridoust, M. Yadegar, N. Meskin, "Data-driven fault detection and isolation of nonlinear systems using deep learning for Koopman operator," ISA transactions, vol. 134, pp. 200-211, Mar. 2023. [32] P.J. Schmid, "Dynamic mode decomposition and its variants," Annual Review of Fluid Mechanics, vol. 54, pp. 225-254, 2022. [33] J.L. Proctor and, S. Brunton, J.N. Kutz, "Dynamic mode decomposition with control," SIAM Journal on Applied Dynamical Systems, vol. 15, no. 1, pp. 142-161, 2016. [34] M. Bakhtiaridoust, M. Yadegar, N. Meskin, and M. Noorizadeh, "Model-free geometric fault detection and isolation for nonlinear systems using koopman operator," IEEE Access, vol. 10, pp. 14835-14845, Jan. 2022. [35] M. Yadegar and N. Meskin, "Fault-tolerant control of nonlinear heterogeneous multi-agent systems," Automatica, vol. 127, p. 109514, 2021. [36] Q. Lu, and M. Zavala, "Image-based model predictive control via dynamic mode decomposition," Journal of Process Control, vol. 104 , pp. 146-157, 2021. [37] A. Narasingam, and J. Sang, "Development of local dynamic mode decomposition with control: Application to model predictive control of hydraulic fracturing," Computers & Chemical Engineering, vol. 106, pp. 501-511, 2017. [38] X. Qian, Q. Dang, S. Jia, Y. Yuan, K. Huang, H. Chen and L. Zhang, "Operation of Distillation Columns Using Model Predictive Control Based on Dynamic Mode Decomposition Method," Industrial & Engineering Chemistry Research, vol. 62, pp. 21721-21739, 2023. [39] W. Hager, "Updating the inverse of a matrix," SIAM review, vol. 31, no. 2, pp. 221--239, 1989. | ||
|
آمار تعداد مشاهده مقاله: 565 تعداد دریافت فایل اصل مقاله: 14 |
||