- [1] M. J. Ablowitz and P. A. Clarkson, Solitons, nonlinear evolution equations and inverse scattering, Cambridge: Cambridge University Press, 1991.
- [2] N. H. Ali, S. A. Mohammed, and J. Manafian, Study on the simplified MCH equation and the combined KdVmKdV equations with solitary wave solutions, Partial Diff. Eq. Appl. Math., 9 (2024), 100599.
- [3] A. Barari, H. D. Kaliji, M. Ghadimi, and G. Domairry, Nonlinear vibration of Euler-Bernoulli beams, Latin American J. Solids Structures, 8 (2011), 139-148.
- [4] K. Batiha, Approximate analytical solution for the Zakharov–Kuznetsov equations with fully nonlinear dispersion, J. Comput. Appl. Math, 216 (2008), 157-163.
- [5] A. Bekir, Application of the -expansion method for nonlinear evolution equations, Phys. Lett. A, 372 (2008), 3400-3406.
- [6] C. Chun and R. Sakthivel, Homotopy perturbation technique for solving two-point boundary value problems– comparison with other methods, Comput. Phys. Commu, 181 (2010), 1021-1024.
- [7] M. Dehghan and J. Manafian, The solution of the variable coefficients fourth–order parabolic partial differential equations by homotopy perturbation method, Z. Naturforsch, 64 (2009), 420-430.
- [8] M. Dehghan, J. Manafian, and A. Saadatmandi, The solution of the linear fractional partial differential equations using the homotopy analysis method, Z. Naturforsch, 65(a) (2010), 935-949.
- [9] M. Dehghan, J. Manafian, and A. Saadatmandi, Solving nonlinear fractional partial differential equations using the homotopy analysis method, Num. Meth. Partial Differential Eq. J, 26 (2010), 486-498.
- [10] M. Dehghan, J. Manafian, and A. Saadatmandi, Application of semi–analytic methods for the Fitzhugh–Nagumo equation, which models the transmission of nerve impulses, Math. Meth. Appl. Sci, 33 (2010), 1384-1398.
- [11] M. Dehghan and J. Manafian, Study of the wave-breaking’s qualitative behavior of the Fornberg-Whitham equation via quasi-numeric approaches, Int. J. Num. Methods Heat Fluid Flow, to appear in 2011.
- [12] M. Dehghan, J. Manafian, and A. Saadatmandi, Application of the Exp-function method for solving a partial differential equation arising in biology and population genetics, Int. J. Num. Methods Heat and Fluid Flow, 21 (2011), 736-753.
- [13] M. Dehghan, J. Manafian, and A. Saadatmandi, Analytical treatment of some partial differential equations arising in mathematical physics by using the Exp-function method, Int. J. Modern Physics, B, 25 (2011), 2965-2981.
- [14] E. Fan, Extended tanh-function method and its applications to nonlinear equations, Phys. Lett. A, 277 (2000), 212-218.
- [15] F. Farrokhzad, P. Mowlaee, A. Barari, A. J. Choobbasti, and H. D. Kaliji, Analytical investigation of beam deformation equation using perturbation, homotopy perturbation, variational iteration and optimal homotopy asymptotic methods, Carpathian J, Math, 27 (2011), 51-63.
- [16] M. Ghadimi, H. D. Kaliji, and A. Barari, Analytical Solutions to Nonlinear Mechanical Oscillation Problems, J. Vibroengineering, 13 (2011), 133-143.
- [17] H. Gao and R.X. Zhao, New application of the -expansion method to higher-order nonlinear equations, Appl. Math. Comput, 215 (2009), 2781–2786.
- [18] Y. Gu, S. Malmir, J. Manafian, O. A. Ilhan, A. A. Alizadeh, and A. J. Othman, Variety interaction between k-lump and k-kink solutions for the (3+1)-D Burger system by bilinear analysis, Results Phys., 43 (2022), 106032.
- [19] J. H. He, Variational iteration method a kind of non-linear analytical technique: some examples, Int. J. Nonlinear Mech, 34 (1999), 699-708.
- [20] J. H. He and X. H. Wu, Exp–function method for nonlinear wave equations, Chaos, Solitons Fractals, 30 (2006), 700-708.
- [21] R. Hirota, The Direct Method in Soliton Theory, Cambridge Univ., Press, 2004.
- [22] W. Huang, A polynomial expansion method and its application in the coupled Zakharov–Kuznetsov equations, Chaos, Solitons Fractals, 29 (2006), 365-371.
- [23] M. Inc, Exact solutions with solitary patterns for the Zakharov–Kuznetsov equations with fully nonlinear dispersion, Chaos Solitons Fractals, 33 (2007), 1783-1790.
- [24] A. Khajeh, A. Yousefi-Koma, M. Vahdat, and M. M. Kabir, Exact traveling wave solutions for some nonlinear equations arising in biology and engineering, World Appl. Sci. J, 9 (2010), 1433-1442.
- [25] H. D. Kaliji, A. Fereidoon, M. Ghadimi, and M. Eftari, Analytical Solutions for Investigating Free Vibration of Cantilever Beams, World Appl. Sci. J. (Special Issue of Applied Math), 9 (2010), 44-48.
- [26] M. Lakestani, J. Manafian, A. R. Najafizadeh, and M. Partohaghighi, Some new soliton solutions for the nonlinear the fifth-order integrable equations, Comput. Meth. Diff. Equ., 10(2) (2022), 445-460.
- [27] J. Manafian Heris and M. Bagheri, Exact Solutions for the Modified KdV and the Generalized KdV Equations via Exp-Function Method, J. Math. Extension, 4 (2010), 77-98.
- [28] J. Manafian and M. Lakestani, Application of tan(φ/2)-expansion method for solving the Biswas-Milovic equation for Kerr law nonlinearity, Optik, 127(4) (2016), 2040-2054.
- [29] J. Manafian and M. Lakestani, Abundant soliton solutions for the Kundu-Eckhaus equation via tan(φ(ξ))expansion method, Optik, 127(14) (2016), 5543-5551.
- [30] J. Manafian and M. Lakestani, Optical soliton solutions for the Gerdjikov-Ivanov model via tan(φ/2)-expansion method, Optik, 127(20) (2016), 9603-9620.
- [31] J. Manafian and M. Lakestani, N-lump and interaction solutions of localized waves to the (2+ 1)- dimensional variable-coefficient Caudrey-Dodd-Gibbon-Kotera-Sawada equation, J. Geom. Phys., 150 (2020), 103598.
- [32] J. Manafian, L. A. Dawood, and M. Lakestani, New solutions to a generalized fifth-order KdV like equation with prime number p = 3 via a generalized bilinear differential operator, Partial Differ. Equ. Appl. Math., 9 (2024), 100600.
- [33] X. H. Menga, W. J. Liua, H. W. Zhua, C. Y. Zhang, and B. Tian, Multi-soliton solutions and a B¨acklund transformation for a generalized variable-coefficient higher-order nonlinear Schr¨o dinger equation with symbolic computation, Phys. A, 387 (2008), 97-107.
- [34] S. R. Moosavi, N. Taghizadeh, and J. Manafian, Analytical approximations of one-dimensional hyperbolic equation with non-local integral conditions by reduced differential transform method, Comput. Meth. Diff. Equ., 8(3) (2020), 537-552.
- [35] M. H .M. Moussa, Similarity solutions to non-linear partial differential equation of physical phenomena represented by the Zakharov-Koznetsov equation, Int. J. Eng. Sci, 39 (2001), 1565-1575.
- [36] Y. Z. Peng, Exact traveling wave solutions for the Zakharov–Kuznetsov equation, Appl. Math. Comput, 199 (2008), 397-405.
- [37] A. Sousaraie and Z. Bagheri, Traveling wave solution for nonlinear Klein-Gordon equation, World Appl. Sci. J, 11 (2010), 367–370.
- [38] B. K. Shivamoggi, The Painleve´ analysis of the Zakharov–Kuznetsov equation, Phys. Scr, 42 (1990), 641-642.
- [39] M. Wang, X. Li, and J. Zhang, The -expansion method and traveling wave solutions of nonlinear evolution equations in mathematical physics, Phys. Lett. A, 372 (2008), 417-423.
- [40] A. M. Wazwaz, Exact solutions with solitons and periodic structures for the Zakharov–Kuznetsov equation and its modified form, Commu. Nonlinear Sci. Num. Simu, 161 (2005), 577-590.
- [41] A. M. Wazwaz, Traveling wave solutions for combined and double combined sine-cosine-Gordon equations by the variable separated ODE method, Appl. Math. Comput, 177 (2006), 755-760.
- [42] A. M. Wazwaz, The extended tanh method for the Zakharov-Kuznetsov (ZK) equation, the modified ZK equation, and its generalized forms, Commu. Nonlinear Sci. Num. Simu, 13 (2008), 1039-1047.
- [43] E. M. E. Zayed and A. Khaled Gepreel, Some applications of the -expansion method to non-linear partial differential equations, Appl. Math. Comput, 212 (2009), 1–13.
- [44] V. E. Zakharov and E. A. Kuznetsov, On three–dimensional solitons, Sov. Phys, 39 (1974), 285-288.
- [45] S. Zhang, J. L. Tong, and W. Wang, A generalized -expansion method for the mKdV equation with variable coefficients, Phys. Lett. A, 372 (2008), 2254-2257.
- [46] J. Zhang,, X. Wei, and Y. Lu, A generalized -expansion method and its applications, Phys. Lett. A, 372 (2008), 3653-3658.
- [47] M. Zhang, X. Xie, J. Manafian, O. A. Ilhan, and G. Singh, Characteristics of the new multiple rogue wave solutions to the fractional generalized CBS-BK equation, J. Adv. Res., 38 (2022), 131-142.
- [48] X. Zhao, H. Zhou, Y. Tang, and H. Jia, Traveling wave solutions for modified Zakharov–Kuznetsov equation, Appl. Math. Comput, 181 (2006), 634-648.
|