تعداد نشریات | 44 |
تعداد شمارهها | 1,303 |
تعداد مقالات | 16,035 |
تعداد مشاهده مقاله | 52,541,512 |
تعداد دریافت فایل اصل مقاله | 15,245,837 |
شبیهسازی عددی پمپاژ مایعات لزج با استفاده از نوسان یک حباب کاویتاسیون | ||
مهندسی مکانیک دانشگاه تبریز | ||
دوره 54، شماره 3 - شماره پیاپی 108، آبان 1403، صفحه 1-10 اصل مقاله (3.54 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22034/jmeut.2024.62243.3433 | ||
نویسندگان | ||
علیرضا اسفندیاری خسروشاهی1؛ عبدالرحمان دادوند* 2؛ کاوه مصطفی عزیز مانمی3 | ||
1دانشجوی دکتری، گروه مهندسی مکانیک، دانشگاه صنعتی ارومیه، ارومیه، ایران | ||
2استاد، گروه مهندسی مکانیک، دانشگاه صنعتی ارومیه، ارومیه، ایران | ||
3محقق فوق دکترا، گروه علوم ریاضی، دانشگاه وارویک، جاده گیبت هیل، CV4 7AL، کاونتری، انگلستان | ||
چکیده | ||
یک حباب کاویتاسیون هنگام فروپاشی در نزدیکی یک دیواره صلب جت مایعی به سمت دیواره ایجاد میکند. در صورت وجود سوراخ در دیواره جت حباب باعث پمپاژ (انتقال) مایع از درون سوراخ میشود. یک مزیت ویژه چنین میکروپمپهایی، عدم وجود قطعات متحرک و زمان پاسخ سریع است. این فرآیند انتقال مایع، فرآیندی پیچیده، وابسته به زمان و تحت تأثیر پارامترهای مختلفی مانند فاصله بین حباب و دیواره است. هدف از این تحقیق، شبیهسازی فرآیند پمپاژ مایع از سوراخ مخروطی ایجاد شده در یک سطح صلب است. شبیهسازی بر اساس روش حجم سیال به همراه معادلات تک-میدانی ناویر- استوکس انجام شده و اثرات کشش سطحی و لزجت سیال لحاظ میشود. نتایج برحسب شکل حباب، میدان سرعت و فشار اطراف حباب و دبی جرمی عبوری از سوراخ ارائه میگردد. نتایج نشان داد که مقدار جرم خالص عبوری از سوراخ در مدت زمان 44/1 میلیثانیه به ازای مقادیر برابر با 81/0، 91/0، 01/1 و 16/1 به ترتیب برابر با 26/19، 13/18، 95/15 و 94/12 است. در نتیجه بالاترین قدرت پمپاژ جت حباب مربوط به کوچکترین اندازه است. | ||
کلیدواژهها | ||
مایعات لزج؛ حباب کاویتاسیون؛ پمپاژ؛ حجم سیال؛ دبی جرمی؛ جرم خالص | ||
مراجع | ||
[1] Zhang S, Zhang R, Zhang S, Yang J. Effect of impeller inlet geometry on cavitation performance of centrifugal pumps based on radial basis function. International Journal of Rotating Machinery. 2016; 2016(1):6048263. [2] Dong Z, Zhou T, Liu J, Zhang X, Shen B, Hu W, Liu L. Cavitation erosion behaviors of surface chromizing layer on 316L stainless steel. Ultrasonics Sonochemistry. 2019 Nov 1;58:104668. [3] Kim TH, Kim HY. Disruptive bubble behaviour leading to microstructure damage in an ultrasonic field. Journal of Fluid Mechanics. 2014 Jul; 750:355-71. [4] Hua JG, Ren H, Huang J, Luan ML, Chen QD, Juodkazis S, Sun HB. Laser‐Induced Cavitation‐Assisted True 3D Nano‐Sculpturing of Hard Materials. Small. 2023 Jun; 19(24):2207968. [5] Jiang H, Lu H, Zhou Y, Liu Y, Hao C. High-efficiency degradation catalytic performance of a novel Angelica sinensis polysaccharide-silver nanomaterial for dyes by ultrasonic cavitation. Ultrasonics Sonochemistry. 2023 Feb 1; 93:106289. [6] Xu L, Park K, Lei H, Liu P, Kim E, Cho Y, Kim T, Chen C. Chemically-induced active micro-nano bubbles assisting chemical mechanical polishing: Modeling and experiments. Friction. 2023 Sep; 11(9):1624-40. [7] Talabazar FR, Aghdam AS, Jafarpour M, Grishenkov D, Koşar A, Ghorbani M. Chemical effects in “hydrodynamic cavitation on a chip”: The role of cavitating flow patterns. Chemical Engineering Journal. 2022 Oct 1; 445:136734. [8] Wang Z, Huang B, Zhang M, Wang G. Experimental and numerical investigation of ventilated cavitating flow structures with special emphasis on vortex shedding dynamics. International Journal of Multiphase Flow. 2018 Jan 1; 98:79-95. [9] Yang DD, Yu A, Ji B, Zhou JJ, Luo XW. Numerical analyses of ventilated cavitation over a 2-D NACA0015 hydrofoil using two turbulence modeling methods. Journal of Hydrodynamics. 2018 Apr; 30:345-56. [10] Liu YL, Zhang AM, Tian ZL, Wang SP. Numerical investigation on global responses of surface ship subjected to underwater explosion in waves. Ocean Engineering. 2018 Aug 1; 161:277-90. [11] Liu YL, Zhang AM, Tian ZL, Wang SP. Numerical investigation on global responses of surface ship subjected to underwater explosion in waves. Ocean Engineering. 2018 Aug 1; 161:277-90. [12] Wang J, Li S, Gu J, Zhang A. Particle propulsion from attached acoustic cavitation bubble under strong ultrasonic wave excitation. Physics of Fluids. 2023 Apr 1; 35(4). [13] Cheng SH, Quan XB, Zhang S, Zhang TY, Li S. Modeling tail bubble dynamics during the launch of an underwater vehicle using the boundary element method. Journal of Hydrodynamics. 2022 Jun; 34(3):434-43. [14] Zhang S, Wang SP, Zhang AM, Cui P. Numerical study on motion of the air-gun bubble based on boundary integral method. Ocean Engineering. 2018 Apr 15; 154:70-80. [15] Li S, Li YB, Zhang AM. Numerical analysis of the bubble jet impact on a rigid wall. Applied Ocean Research. 2015 Mar 1; 50:227-36. [16] Li G, Yi L, Wang J, Song Y. Hydrodynamic cavitation degradation of Rhodamine B assisted by Fe3+-doped TiO2: Mechanisms, geometric and operation parameters. Ultrasonics Sonochemistry. 2020 Jan 1; 60:104806. [17] Koukouvinis P, Gavaises M, editors. Cavitation and Bubble Dynamics: Fundamentals and Applications. Elsevier; 2021 Sep 24. [18] Chahine GL, Kapahi A, Choi JK, Hsiao CT. Modeling of surface cleaning by cavitation bubble dynamics and collapse. Ultrasonics Sonochemistry. 2016 Mar 1; 29:528-49. [19] کنعان سامرند، دادوند عبدالرحمان. شبیهسازی عددی تولید قطره از یک محفظه متقارن محوری به کمک حباب جرقهای.مهندسی مکانیک دانشگاه تبریز 1397، د48، ش2، ص 269-278. [20] Reuter F, Mettin R. Mechanisms of single bubble cleaning. Ultrasonics Sonochemistry. 2016 Mar 1; 29:550-62. [21] Chahine GL, Kapahi A, Choi JK, Hsiao CT. Modeling of surface cleaning by cavitation bubble dynamics and collapse. Ultrasonics Sonochemistry. 2016 Mar 1; 29:528-49. [22] Sagar HJ, El Moctar O. Dynamics of a cavitation bubble between oblique plates. Physics of Fluids. 2023 Jan 1; 35(1). [23] Kooiman K, Roovers S, Langeveld SA, Kleven RT, Dewitte H, O'Reilly MA, Escoffre JM, Bouakaz A, Verweij MD, Hynynen K, Lentacker I. Ultrasound-responsive cavitation nuclei for therapy and drug delivery. Ultrasound in medicine & biology. 2020 Jun 1;46(6):1296-325. [24] Kooiman K, Vos HJ, Versluis M, De Jong N. Acoustic behavior of microbubbles and implications for drug delivery. Advanced Drug Delivery Reviews. 2014 Jun 15; 72:28-48. [25] Kaykanat SI, Uguz AK. The role of acoustofluidics and microbubble dynamics for therapeutic applications and drug delivery. Biomicrofluidics. 2023 Mar 1;17(2). [26] Chen X, Liang D, Sun W, Shou X, Shang L, Shen X. Suspended bubble microcapsule delivery systems from droplet microfluidic technology for the local treatment of gastric cancer. Chemical Engineering Journal. 2023 Feb 15; 458:141428. [27] Ibsen S, Schutt CE, Esener S. Microbubble-mediated ultrasound therapy: a review of its potential in cancer treatment. Drug Design, Development and Therapy. 2013 May; 3:375-88. [28] Zhang ZH, Wang S, Cheng L, Ma H, Gao X, Brennan CS, Yan JK. Micro-nano-bubble technology and its applications in food industry: A critical review. Food Reviews International. 2023 Aug 25; 39(7):4213-35. [29] Singh B, Shukla N, Cho CH, Kim BS, Park MH, Kim K. Effect and application of micro-and nanobubbles in water purification. Toxicology and Environmental Health Sciences. 2021 Mar; 13:9-16. [30] Cao Z, Zhou J, Wei J, Sun D, Yu B. Direct numerical simulation of bubble dynamics and heat transfer during nucleate boiling on the micro-pin-finned surfaces. International Journal of Heat and Mass Transfer. 2020 Dec 1; 163:120504. [31] Liu LT, Yao XL, Zhang AM, Chen YY. Numerical analysis of the jet stage of bubble near a solid wall using a front tracking method. Physics of Fluids. 2017 Jan 1; 29(1). [32] Tang H, Liu YL, Cui P, Zhang AM. Numerical study on the bubble dynamics in a broken confined domain. Journal of Hydrodynamics. 2020 Dec; 32(6):1029-42. [33] حاجی زاده اقدم ابوالفضل. تحلیل تجربی رفتار یک حباب نوسانی در مجاورت سطوح صلب و الاستیک. مجله مهندسی مکانیک دانشگاه تبریز1400، د51، ش3، ص35-40. [34] Huang G, Zhang M, Ma X, Chang Q, Zheng C, Huang B. Dynamic behavior of a single bubble between the free surface and rigid wall. Ultrasonics Sonochemistry. 2020 Oct 1; 67:105147. [35] Ma X, Huang B, Zhao X, Wang Y, Chang Q, Qiu S, Fu X, Wang G. Comparisons of spark-charge bubble dynamics near the elastic and rigid boundaries. Ultrasonics Sonochemistry. 2018 May 1; 43:80-90. [36] Lv L, Zhang Y, Zhang Y. Experimental investigations of the particle motions induced by a laser-generated cavitation bubble. Ultrasonics Sonochemistry. 2019 Sep 1; 56:63-76. [37] Pontes P, Cautela R, Teodori E, Moita A, Liu Y, Moreira AL, Nikulin A, del Barrio EP. Effect of pattern geometry on bubble dynamics and heat transfer on biphilic surfaces. Experimental Thermal and Fluid Science. 2020 Jul 1; 115:110088. [38] Jund AA, Dadvand A, Aziz IA, Manmi KM. An extended Laplacian smoothing for boundary element analysis of 3D bubble dynamics. Engineering Analysis with Boundary Elements. 2024 Mar 1;160:76-88. [39] Bapir SA, Manmi KM, Saeed RK, Dadvand A. Oscillation of an ultrasonically driven gas bubble in an asymmetric confined domain. International Journal of Mechanical Sciences. 2024 Mar 1;265:108861. [40] Reuter F, Mettin R. Mechanisms of single bubble cleaning. Ultrasonics Sonochemistry. 2016 Mar 1; 29:550-62. [40] Mao Y, Peng Y, Zhang J. Study of cavitation bubble collapse near a wall by the modified lattice Boltzmann method. Water. 2018 Oct 12;10(10):1439. [41] Shan ML, Zhu CP, Zhou X, Yin C, Han QB. Investigation of cavitation bubble collapse near rigid boundary by lattice Boltzmann method. Journal of Hydrodynamics. 2016 Jun; 28(3):442-50. [42] Khoo BC, Klaseboer E, Hung KC. A collapsing bubble-induced micro-pump using the jetting effect. Sensors and Actuators A: Physical. 2005 Jan 31; 118(1):152-61. [43] Lew KS, Klaseboer E, Khoo BC. A collapsing bubble-induced micropump: an experimental study. Sensors and Actuators A: Physical. 2007 Jan 8; 133(1):161-72. [44] Karri B, Ohl SW, Klaseboer E, Ohl CD, Khoo BC. Jets and sprays arising from a spark-induced oscillating bubble near a plate with a hole. Physical Review E-Statistical, Nonlinear, and Soft Matter Physics. 2012 Sep; 86(3):036309. [45] Dadvand A, Moloudi G, Saleki-Haselghoubi N, Dawoodian M. Dynamics of a gas bubble near the aperture of a perforated concave rigid plate. Ocean Engineering. 2022 Aug 15; 258:111697. [46] Moloudi G, Dadvand A, Dawoodian M, Saleki-Haselghoubi N. Oscillation of a transient bubble near an aperture made in a convex rigid plate. Engineering Analysis with Boundary Elements. 2019 Jun 1; 103:51-65 [47] Reese H, Schädel R, Reuter F, Ohl CD. Microscopic pumping of viscous liquids with single cavitation bubbles. Journal of Fluid Mechanics. 2022 Aug; 944:A1. [48] Buogo S, Cannelli GB. Implosion of an underwater spark-generated bubble and acoustic energy evaluation using the Rayleigh model. The Journal of the Acoustical Society of America. 2002 Jun 1; 111(6):2594-600. [49] Turangan CK, Ong GP, Klaseboer E, Khoo BC. Experimental and numerical study of transient bubble-elastic membrane interaction. Journal of Applied Physics. 2006 Sep 1; 100(5). | ||
آمار تعداد مشاهده مقاله: 113 تعداد دریافت فایل اصل مقاله: 167 |