- [1] M. Abbaszadeh, A. Bagheri Salec, A. Al-Khafaji, and S. Kamel, The Effect of Fractional-Order Derivative for Pattern Formation of Brusselator Reaction-Diffusion Model Occurring in Chemical Reactions, Iranian J. Math. Chem., 14(4) (2023), 243–269.
- [2] A. Alipanah, K. Mohammadi, and M. Ghasemi, Numerical solution of third-Order boundary value problems using non-classical sinc-collocation method, Comput. Methods Differ. Equ., 11(3) (2023) 643-663.
- [3] E. F. Anley and Z. Zheng, Finite difference approximation method for a space fractional convection diffusion equation with variable coefficients, Symmetry, 12(3) (2020), 485.
- [4] S. Bonyadi, Y. Mahmoudi, M. Lakestani, and M. Jahangiri Rad, Numerical solution of space-time fractional PDEs with variable coefficients using shifted Jacobi collocation method, Comput. Methods Differ. Equ., 11(1) (2023), 81–94.
- [5] W. Chen and H. Sun, Fractional differential equations and statistical models for anomalous diffusion, Science Press, Beijing, 2017.
- [6] W. Deng, Finite element method for the space and time fractional Fokker Planck equation, SIAM J. Numer. Anal., 47(1) (2009), 204–226.
- [7] L. B. Feng, P. Zhuang, F. Liu, I. Turner, and Y. Gu, Finite element method for space-time fractional diffusion equation, Numer. Algorithms, 72 (2016), 749–767.
- [8] M. S. Hashemi, E. Ashpazzadeh, M. Moharrami, and M. Lakestani, Fractional order Alpert multiwavelets for discretizing delay fractional differential equation of pantograph type, Appl. Numer. Math., 170 (2021), 1–13.
- [9] J. Liu, X. Li, and X. Hu, A RBF-based differential quadrature method for solving two-dimensional variable-order time fractional advection-diffusion equation, J. Comput. Phys., 384 (2019), 222–238.
- [10] C. F. Lorenzo and T. T. Hartley, Variable order and distributed order fractional operators, Nonlinear Dyn., 29 (2002), 57–98.
- [11] J. Lund and K. L. Bowers, Sinc methods for quadrature and differential equations, Society for Industrial and Applied Mathematics, (1992).
- [12] H. Mirzaei, M. Emami, K. Ghanbari, and M. Shahriari, An efficient algorithm for computing the eigenvalues of conformable Sturm-Liouville problem, Comput. Methods Differ. Equ., 12(3) (2024), 471–483.
- [13] M. Pourbabaee and A. Saadatmandi, The construction of a new operational matrix of the distributed-order fractional derivative using Chebyshev polynomials and its applications, Int. J. Comput. Math., 98(11) (2021), 2310– 2329.
- [14] M. Pourbabaee and A. Saadatmandi, New operational matrix of riemann-liouville fractional derivative of orthonormal bernoulli polynomials for the numerical solution of some distributed-order time-fractional partial differential equations, J. Appl. Anal. Comput., 13(6) (2023), 3352–3373.
- [15] L. E. Ramirez and C. F. Coimbra, On the variable order dynamics of the nonlinear wake caused by a sedimenting particle, Physica D: nonlinear phenomena, 240(13) (2011), 1111–1118.
- [16] A. Saadatmandi, A. Khani, and M. R. Azizi, Numerical calculation of fractional derivatives for the sinc functions via Legendre polynomials, Math. Interdisc. Res., 5(2) (2020), 71–86.
- [17] A. Safaie, A. H. Salehi Shayegan, and M. Shahriari, Identification of an Inverse Source Problem in a Fractional Partial Differential Equation Based on Sinc-Galerkin Method and TSVD Regularization, Comput. Methods Appl. Math., 24(1) (2024), 215–237.
- [18] A. H. Salehi Shayegan, Coupling RBF-based meshless method and Landweber iteration algorithm for approximating a space-dependent source term in a time fractional diffusion equation, J. Comput. Appl. Math., 417 (2023), 114531.
- [19] F. Stenger, Numerical methods based on sinc and analytic functions, Springer Science and Business Media, 20 (2012).
- [20] F. Stenger, Approximations via Whittaker’s cardinal function, J. Approx. Theory, 17(3) (1976), 222–240.
- [21] F. Stenger, A Sinc-Galerkin method of solution of boundary value problems, Math. Comput., 33 (1979), 85–109.
- [22] H. Sun, W. Chen, and Y. Chen, Variable-order fractional differential operators in anomalous diffusion modeling, Phys. A: Stat. Mech. Appl., 388(21) (2009), 4586–4592.
- [23] M. Ebadi and M. Shahriari, A class of two stage multistep methods in solutions of time dependent parabolic PDEs, Calcolo, 61(1) (2024), 4.
- [24] H. G. Sun, W. Chen, H. Wei, and Y. Q. Chen, A comparative study of constant-order and variable-order fractional models in characterizing memory property of systems, Eur. Phys. J-Spec Top., 193(1) (2011), 185–192.
- [25] A. Tayebi, Y. Shekari, and M. H. Heydari, A meshless method for solving two-dimensional variable-order time fractional advection-diffusion equation, J. Comput. Phys., 340 (2017), 655–669.
- [26] P. Huang, Y. Gu, F. Liu, I. Turner, and P. KDV. Yarlagadda, Time-dependent fractional advection–diffusion equations by an implicit MLS meshless method, Int. J. Numer. Methods Eng., 88(13) (2011), 1346–1362.
- [27] F. Zabihi, The use of Sinc-collocation method for solving steady state concentrations of carbon dioxide absorbed into phenyl glycidyl ether, Comput. Methods Differ. Equ., (2024).
- [28] A. Zakeri, A. S. Shayegan, and S. Sakaki, Application of sinc-Galerkin method for solving a nonlinear inverse parabolic problem, T. A. Razmadze Math. In., 171(3) (2017), 411–423.
|