تعداد نشریات | 43 |
تعداد شمارهها | 1,266 |
تعداد مقالات | 15,616 |
تعداد مشاهده مقاله | 51,619,826 |
تعداد دریافت فایل اصل مقاله | 14,546,983 |
Two-dimensional temporal fractional advection-diffusion problem resolved through the Sinc-Galerkin method | ||
Computational Methods for Differential Equations | ||
مقالات آماده انتشار، پذیرفته شده، انتشار آنلاین از تاریخ 05 شهریور 1403 اصل مقاله (533.09 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22034/cmde.2024.60039.2560 | ||
نویسندگان | ||
Ali Safaei1؛ Amir Hossein Salehi Shayegan2؛ Mohammad Shahriari* 3 | ||
11. Department of Mathematics, Faculty of Science, University of Maragheh, Box 55136-553, Maragheh, Iran. 2. Department of Mathematics n, Faculty of Basic Science, Khatam-ol-Anbia (PBU) University, Tehran, Iran. | ||
2Department of Mathematics n, Faculty of Basic Science, Khatam-ol-Anbia (PBU) University, Tehran, Iran. | ||
3Department of Mathematics, Faculty of Science, University of Maragheh, Box 55136-553, Maragheh, Iran. | ||
چکیده | ||
Applying the Sinc-Galerkin method, even for problems that include infinity and semi-infinite intervals, is known as exponential fading errors and in certain conditions as the optimal convergence rate. Additionally, this approach does not suffer from the normal instability issues that often arise in other methods. Therefore, a numerical technique based on the Sinc-Galerkin method is devised in this study to solve the two-dimensional time fractional advection-diffusion problem. To be precise, the spatial and temporal discretizations of the Sinc-Galerkin and finite difference methods are coupled to provide the suggested approach. Additionally, the suggested method's convergence is looked at. Two numerical examples are provided in depth in the conclusion to demonstrate the effectiveness and precision of the suggested approach. | ||
کلیدواژهها | ||
Time fractional advection-diffusion equation؛ Sinc-Galerkin method؛ Caputo's fractional derivative؛ Convergence analysis | ||
آمار تعداد مشاهده مقاله: 41 تعداد دریافت فایل اصل مقاله: 53 |