- [1] Africa Centres for Disease Control and Prevention (Africa CDC), 2022–2023 Mpox outbreak, https://en. wikipedia.org/wiki/2022.
- [2] A. Aldurayhim, A. Elsonbaty, W. Adel, and A. El-Mesady, Mathematical modeling and analysis of a novel monkeypox virus spread integrating imperfect vaccination and nonlinear incidence rates, Ain Shams Engineering Journal, 15(3) (2024), 102451.
- [3] N. Akinwande, F. Oguntolu, and N. Lasisi, Development and exploration of a mathematical model for transmission of monkeypox disease in humans, Mathematical Models in Engineering, 6(1) (2020), 23–33.
- [4] A. Augustine, O. I. Marcus, and T. Jonathan, A co-infection model for monkeypox and HIV/AIDS: Sensitivity and bifurcation analyses, Journal of Scientific Research and Reports, 30(5) (2024), 351–368.
- [5] O. Babasola, E. O. Omondi, K. Oshinubi, and N. M. Imbusi, Stochastic delay differential equations: a comprehensive approach for understanding biosystems with application to disease modelling, Applied-Math, 3(4) (2023), 702–721.
- [6] B. Bolaji, O. A. Godwin, and O. O. Peace, A compartmental deterministic epidemiological model with non-linear differential equations for analyzing the co-infection dynamics between COVID-19, HIV, and monkeypox diseases, Healthcare Analytics, (2024), 100311.
- [7] C. P. Bhunu, J. Hyman, and S. Mushayabasa, Modelling HIV/AIDS and monkeypox co-infection, Applied Mathematics and Computation, 218(18) (2012), 9504–9518.
- [8] X. Cai, T. Zhou, W. Shi, Y. Cai, and J. Zhou, Monkeypox virus crosstalk with HIV: An integrated skin transcriptome and machine learning study, ACS Omega, 8(49) (2023), 47283–47294.
- [9] M. Cavallaro, S. P. Brand, F. Cumming, C. Turner, J. Hilton, I. Florence, L. M. Guzman-Rincon, P. Blomquist, D. J. Nokes, and T. House, The role of vaccination and public awareness in forecasts of mpox incidence in the United Kingdom, Nature Communications, 14(1) (2023), 4100.
- [10] P. A. Clay, E. D. Pollock, E. M. Saldarriaga, P. Pathela, M. Macaraig, J. R. Zucker, B. Crouch, I. Kracalik, S. O. Aral, and I. H. Spicknall, Modeling the impact of prioritizing first or second vaccine doses during the 2022 mpox outbreak, medRxiv, (2023), 2023–10.
- [11] C. E. Copen, E. D. Pollock, J. M. Asher, K. P. Delaney, P. A. Clay, D. C. Payne, E. M. Saldarriaga, P. Pathela, B. Crouch, and I. H. Spicknall, Modeling the impact of prioritizing first or second vaccine doses during the 2022 mpox outbreak, medRxiv, (2023), 2023–10.
- [12] P. A. Clay, J. M. Asher, N. Carnes, C. E. Copen, K. P. Delaney, D. C. Payne, E. D. Pollock, J. Mermin, Y. Nakazawa, W. Still, et al., Modelling the impact of vaccination and sexual behaviour adaptations on mpox cases in the USA during the 2022 outbreak, Sexually Transmitted Infections, 100(2) (2024), 70–76.
- [13] P. L. Delamater, E. J. Street, T. F. Leslie, Y. T. Yang, and K. H. Jacobsen, Complexity of the basic reproduction number (R0), Emerging Infectious Diseases, 25(1) (2019), 1.
- [14] O. Diekmann, J. A. P. Heesterbeek, and J. A. Metz, On the definition and the computation of the basic reproduction ratio R0 in models for infectious diseases in heterogeneous populations, Journal of Mathematical Biology, 28 (1990), 365–382.
- [15] O. Diekmann, J. Heesterbeek, and M. G. Roberts, The construction of next-generation matrices for compartmental epidemic models, Journal of the Royal Society Interface, 7(47) (2010), 873–885.
- [16] K. N. Durski, A. Khalakdina, M. G. Reynolds, I. K. Damon, S. Briand, Y. Nakazawa, M. H. Djingarey, V. Olson, and A. M. McCollum, Emergence of monkeypox—west and central africa, 1970–2017, Morbidity and Mortality Weekly Report, 67(10) (2018), 306.
- [17] A. El-Mesady, W. Adel, A. Elsadany, and A. Elsonbaty, Stability analysis and optimal control strategies of a fractional-order monkeypox virus infection model, Physica Scripta, 98(9) (2023), 095256.
- [18] A. Elsonbaty, A. Aldurayhim, W. Adel, and A. El-Mesady, Investigating the dynamics of a novel fractional-order monkeypox epidemic model with optimal control, Alexandria Engineering Journal, 73 (2023), 519–542.
- [19] B. Liu, M. Altanji, R. Nawaz, S. Farid, S. Ullah, and S. Wondimagegnhu Teklu, Mathematical assessment of monkeypox disease with the impact of vaccination using a fractional epidemiological modeling approach, Scientific Reports, 13(1) (2023), 13550.
- [20] J. Mermin, P. A. Clay, E. D. Pollock, J. M. Asher, N. Carnes, C. E. Copen, and K. P. Delaney, Modelling the impact of vaccination and sexual behaviour adaptations on mpox cases in the USA during the 2022 outbreak, Sexually Transmitted Infections, 100(2) (2024), 70–76.
- [21] Nigeria Centre for Disease Control, Mpox Monkeypox outbreak situation report, https://ncdc.gov.ng/report/, (2023). [Online; Accessed on August 23, 2023].
- [22] A. Omame, Q. Han, S. A. Iyaniwura, E. Adeniyi, N. L. Bragazzi, X. Wang, J. D. Kong, and W. A. Woldegerima, Understanding the impact of HIV on mpox transmission in an MSM population: a mathematical modeling study, Available at SSRN 4762707, (2024).
- [23] O. J. Peter, A. Abidemi, M. M. Ojo, and T. A. Ayoola, Mathematical model and analysis of monkeypox with control strategies, The European Physical Journal Plus, 138(3) (2023), 242.
- [24] O. J. Peter, S. Kumar, N. Kumari, F. A. Oguntolu, K. Oshinubi, and R. Musa, Transmission dynamics of Monkeypox virus: a mathematical modelling approach, Modeling Earth Systems and Environment, (2022), 1–12.
- [25] O. J. Peter, C. E. Madubueze, F. A. Oguntolu, M. M. Ojo, and T. A. Ayoola, Modeling and optimal control of monkeypox with cost-effective strategies, Modeling Earth Systems and Environment, 9(2) (2023), 1989–2007.
- [26] E. M. Tag-Eldin, F. Allehiany, M. A. Khan, M. H. DarAssi, and I. Ahmad, Mathematical modeling and backward bifurcation in monkeypox disease under real observed data, Results in Physics, 50 (2023), 106557.
- [27] M. Rabiu, E. J. Dansu, O. A. Mogbojuri, I. O. Idisi, M. M. Yahaya, P. Chiwira, R. T. Abah, and A. A. Adeniji, Modeling the sexual transmission dynamics of mpox in the United States of America, The European Physical Journal Plus, 139(3) (2024), 1–20.
- [28] P. Van den Driessche, Reproduction numbers of infectious disease models, Infectious Disease Modelling, 2(3) (2017), 288–303.
- [29] World Health Organization, Mpox (monkeypox Newsroom), https://www.who.int/news-room/ questions-and-answers/item/monkeypox, (2023). [Online; Accessed on August 13, 2023].
- [30] World Health Organization, Mpox (monkeypox Fact sheets), https://www.who.int/news-room/fact-sheets/ detail/monkeypox, (2023). [Online; Accessed on August 13, 2023].
- [31] World Bank, Population, total - Nigeria, https://data.worldbank.org/indicator/SP.POP.TOTL?locations= NG, (2023). [Online; Accessed on August 18, 2023].
- [32] World Health Organization, Health data overview for the Federal Republic of Nigeria, https://data.who.int/ countries/566, (2023). [Online; Accessed on August 18, 2023].
- [33] World Health Organization, Africa Region, Emergency Preparedness and Response, https://www.afro.who. int/, (2023). [Online; Accessed on August 25, 2023].
- [34] World Bank, Population, total - Congo, Dem. Rep., https://data.worldbank.org/indicator/SP.POP.TOTL? locations=CD, (2023). [Online; Accessed on August 18, 2023].
- [35] World Health Organization, Health data overview for the Democratic Republic of the Congo, https://data.who. int/countries/180, (2023). [Online; Accessed on August 18, 2023].
- [36] M. Xiridou, F. Miura, P. Adam, E. O. de Coul, J. de Wit, and J. Wallinga, The fading of the mpox outbreak among men who have sex with men: a mathematical modelling study, The Journal of Infectious Diseases, (2024), jiad414.
- [37] S. Yang, X. Guo, Y. Zhao, Z. Zhao, T. Chen, H. Wei, Y. Wang, J. Rui, and W. Song, Possibility of mpox viral transmission and control from high-risk to the general population: a modeling study, BMC Infectious Diseases, 23(1) (2023), 119.
- [38] N. Zhang, E. Addai, L. Zhang, M. Ngungu, E. Marinda, and A. JKK, Fractional modeling and numerical simulation for unfolding Marburg–monkeypox virus co-infection transmission, Fractals, 31(7) (2023), 2350086.
|