تعداد نشریات | 43 |
تعداد شمارهها | 1,268 |
تعداد مقالات | 15,625 |
تعداد مشاهده مقاله | 51,652,379 |
تعداد دریافت فایل اصل مقاله | 14,559,463 |
LQR Technique Based SMC Design for a Class of Uncertain Time-delay Conic Nonlinear Systems | ||
Computational Methods for Differential Equations | ||
مقالات آماده انتشار، پذیرفته شده، انتشار آنلاین از تاریخ 21 مرداد 1403 اصل مقاله (533.59 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22034/cmde.2024.57243.2394 | ||
نویسندگان | ||
Ghader Khaledi1؛ Seyed Mehdi Mirhosseini-Alizamini* 2؛ Mohammad Ghamgosar3 | ||
1Department of Education, Mahabad, Iran. | ||
2Department of Mathematics, Payame Noor University (PNU), P.O. Box 19395-4697, Tehran, Iran. | ||
3Academic Center for Education, Cultural and Research (ACCECR), Rasht, Iran. | ||
چکیده | ||
In this paper, the finite-time sliding mode controller design problem of a class of conic-type nonlinear systems with time-delays, mismatched external disturbance and uncertain coefficients is investigated. The time-delay conic nonlinearities are considered to lie in a known hypersphere with an uncertain center. Conditions have been obtained to design a linear quadratic regulator based on sliding mode control. For this purpose, by applying Lyapunov- Krasovskii stability theory and linear matrix inequality approach, sufficient conditions are derived to ensure the finite-time boundedness of the closed-loop systems over the finite-time interval. Thereafter, an appropriate control strategy is constructed to drive the state trajectories onto the specified sliding surface in a finite time. Finally, an example related to the time-delayed Chua's circuit is given to demonstrate the effectiveness of the suggested method. Also, the efficiency of the suggested method is compared with other methods by using an another numerical example. | ||
کلیدواژهها | ||
Finite-time bounded؛ Integral sliding mode؛ Time delay system؛ Linear quadratic regulator؛ Conic nonlinear systems | ||
آمار تعداد مشاهده مقاله: 37 تعداد دریافت فایل اصل مقاله: 33 |