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Abstract
In this paper, we developed a SEIaIsQRS epidemic model for COVID-19 by using compartmental analysis.
In this article, the dynamics of COVID-19 are divided into six compartments: susceptible, exposed, asymp-

tomatically infected, symptomatically infected, quarantined, and recovered. The positivity and boundedness of

the solutions have been proven. We calculated the basic reproduction number for our model and found both
disease-free and endemic equilibria. It is shown that the disease-free equilibrium is globally asymptotically

stable. We explained under what conditions, the endemic equilibrium point is locally asymptotically stable.

Additionally, the center manifold theorem is applied to examine whether our model undergoes a backward
bifurcation at R0 = 1 or not. To finish, we have confirmed our theoretical results by numerical simulation.
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1. Introduction

Diseases have always played an important role in human history. Infectious diseases have had a significant impact
on population growth, victory in wars, and the country’s economy. A famous example of the impact that a disease
may have on societies is the plague of the 14th century, which is known as the black death. This disease began in
Europe around 1346 AD. It is estimated that from that time to 1350, about 20 million people died due to the plague
[7]. Another important example is the outbreak of smallpox between 1507 and 1900 in America. A sudden outbreak
of the disease began in 1517 and killed about a third of the native population of the island of Hispaniola [18]. In 1520
the disease reached Mexico and it is believed that half of the population of Mexico was killed. Until 1798, when the
smallpox vaccine was developed by Edward Jenner, thousands of people lost their lives due to this disease [6]. Cur-
rently, the human immunodeficiency virus (HIV), which is the cause of acquired immunodeficiency syndrome (AIDS)
in humans, strongly affects the mortality pattern in developed and developing countries. Sub-Saharan Africa, where
there were about 23.6 million people with HIV by the end of 2004, has been most affected by this disease [2]. Also,
severe acute respiratory syndrome (SARS) started in China in November 2002 and from February 2003 to August
2003, when it was brought under control, it caused 623 deaths in 30 countries [31]. In December 2019, an outbreak
of a viral disease was reported in the Chinese city of Wuhan. The cause of this disease was a new type of genetically
modified virus from the family of coronaviruses called SARS-CoV-2, which was named the disease of COVID-19 [36].
Unfortunately, due to its high contagiousness, this virus quickly expanded throughout the world and infected all the
countries of the world in a short period (less than four months) [32, 35]. This virus and the COVID-19 disease that
spreads through it have affected global health and healthcare systems in countries and continents. Considering the
global prevalence and the complexity of the characteristics of the disease of COVID-19, a deeper investigation of this
virus and the characteristics of the disease seems necessary.
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The mentioned cases show well the impact that disease can have on the population of society and emphasize the need
to study how the disease spreads as a branch of science called epidemiology. Epidemiology is the science of studying
the spread of diseases to find out the factors involved in their occurrence.
Fever, fatigue, and dry cough are the most common symptoms of COVID-19. Some patients may have other symp-
toms such as pain and bruising, nasal congestion, runny nose, sore throat, or diarrhea. These symptoms are usually
mild and their onset is gradual. Some affected people may not experience any of the symptoms of the disease and
feel unwell. Almost out of every 6 people infected with COVID-19, one person becomes seriously ill and suffers from
shortness of breath. This disease can spread to others through droplets that are spread around by coughing or exhaling
from the mouth and nose of a person infected with COVID-19. These droplets are spread on the devices and surfaces
around the sick person. Then, other people get infected with COVID-19 by touching these equipment or contaminated
surfaces and touching their eyes, mouth, and nose. It is also possible to get infected by breathing in droplets from
the cough or exhalation of a person infected with COVID-19. For this reason, it is important to keep a distance of at
least one meter from the person infected with COVID-19.
Despite the existence of extensive preventive and therapeutic measures, such as improving the level of public health,
antibiotics, and vaccination, infectious diseases are still the most important cause of death caused by the disease.
The role of quarantine as a preventive strategy in preventing the spread of COVID-19 disease is very important in
society and public health. Quarantine measures by limiting social contacts, travel arrangements, and physical restric-
tions have significant effects in reducing the rate of disease spread. These measures allow society and health systems
to use the time to acquire data, run tests, track and trace suspicious cases, and create health facilities to optimally
control and prevent the spread of this disease.
The spread of infectious diseases and how to control them has been a significant issue in recent years, and mathemat-
ical models are an important tool for investigating this issue. Mathematical models have the potential to predict the
course of the disease and estimate the rate of disease transmission, the rate of death, and the recovery of patients.
Currently, the purpose of applying mathematical models is to investigate the impact of the COVID-19 disease on the
population, the measures required by public health institutions, and the effectiveness of various quarantine measures.
Recently, various models, both simple and complex, which include various parameters and variables, have been used
to achieve this goal. Also, mathematical and numerical analysis in the study of COVID-19 play a very important
role in explaining and predicting the spread of the disease, the impact of various interventions, and optimizing control
strategies. From simple mathematical models to more complex models based on dynamic analysis methods, temporal
analysis, and complex networks, these methods allow researchers and decision-makers to gain a better understanding
of disease behavior and the impact of various interventions. In recent decades, many authors and researchers have
discussed and analyzed mathematical models for predicting and controlling epidemics in their articles [1, 3, 13, 16, 17].
Neil F. Johnson is one of the prominent researchers who analyze mathematical epidemic models in his articles. He
pays attention to the effect of the spread of networks on the spread of diseases and the complications related to them
and uses modeling methods [21, 23]. Also, Alison Galvani is one of the researchers who deals with mathematical
epidemic models and analyzes and predicts the spread of diseases using mathematical models in her articles [12, 26].
The spread of infectious diseases and their effects on society and health systems require a more accurate understanding
of patterns of spread and prediction of temporal changes. In this regard, the use of dynamic models as a powerful
and efficient tool in the analysis and prediction of infectious diseases has been considered. Dynamic models show the
changes and interactions between different factors of infectious diseases by using mathematical equations and time
information. These models can simulate and predict disease behavior in different societies and responses to different
variables. Due to the complexity and discontinuity of the factors affecting the spread of infectious diseases, dynamic
models provide the possibility of analyzing the effects of various variables including population, prevalence, vaccina-
tion, people’s behavior, and health interventions. In this type of model, the population is divided into several parts,
assuming that all the people in one part of the population have the same behavior. For example, Akuka et al in [4]
designed a susceptible (S), individuals who have received the first dose of vaccine (V1), individuals who have received
the second dose of vaccine (V2), exposed (E), quarantined (Q), infected (I) and recovered (R) model. By using
numerical experiments, they concluded intervention measures such as double-dose vaccination and quarantine help to
reduce the spread of COVID-19. Teklu in [34] used a susceptible (S), protected (P ), vaccinated (V ), infected (I),
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hospital quarantined (Q1) and home quarantined (Q2) model. He concluded that the protective measures outlined
in his paper will help reduce the spread of the COVID-19 disease. In addition, Ghostin et al. in [19] proposed a
susceptible (S), exposed (E), infectious (I), quarantined (Q), recovered (R), deaths (D), and vaccinated (V ) model
to simulate the novel coronavirus disease spread in Saudi Arabia. They used the Kalman filter to constrain the model
outputs and its parameters with available data. Das et al in [14] introduced a susceptible (S), asymptomatically
infected (Ia), symptomatically infected (Is), hospitalised (H) and recovered (R) dynamical model. They showed that
public behavior and government measures, for example, social distancing, vaccination, and awareness programs are
more useful than only public responses to minimize the spread of COVID-19 pandemic. Algarni et al in [5] studied
a susceptible (S), vaccinated (V ), symptomatically infected (I), asymptomatically infected (A) and recovered (R)
dynamical model. They showed that the vaccine reduces the transmission rate. Their work explains the rise in the
number of new infectious immediately after the start of the vaccination campaign in Saudi Arabia. Hail et al in
[20] considered a susceptible (S), latent infected (L), undetected infected (Iu), detected infected (Id), recovered (R)
dynamical model. They attempted to estimate the mean proportion of correctly confined sub-populations in Morocco
as well as its effect on the continuing spread of COVID-19. A fitting to Moroccan data is established. In addition,
interested readers can refer to [27–30] and the references therein.
Several researchers have used fractional derivatives to analyze diseases and physical phenomena. For example, Reza-
pour et al. [33] presented a model for COVID-19 using the Caputo fractional derivative. Based on Real data, they
introduced a numerical simulation to forecast the transmission of disease in Iran and in the world. Baishya et al
[8] concentrated on the examination of the Bloch equation affected by the Caputo fractional derivative, both with
and without delay, and explores the underlying chaos utilizing a sliding mode controller. Mohammadaliee et al. [25]
introduced a model for COVID-19 using the ψ-Caputo fractional derivative. They have showed that when the order
of derivative is equal to 0.95 then, the prevalence of the disease is better. Kherraz et al [24] studied boundary value
problems for fractional differential equations with multiple orders of fractional derivative and integrals. Houas and
Samei [22] examined the Duffing-Rayleigh type problem with sequential fractional q-derivative of the Caputo type.
In this paper, we introduce and analyze an SEIaIsQRS epidemic model which includes a quarantine program that
helps to limit COVID-19.
This paper is organized as follows: in section 2, the proposed model is formulated. The positivity and boundedness of
solutions are proved in this section. In section 3, the equilibrium points and basic reproduction number for the model
are obtained. In section 4, we present stability analysis for the equilibrium points. Section 5 is dedicated to backward
bifurcation analysis. Sensitivity analysis and numerical experiments are discussed in section 6 and finally conclusion
is in section 7.

2. Model formulation

This new model will be divided into some compartments such as the total human population size at time t, denoted
by N(t) and it comprises of the susceptible (S), exposed (E), symptomatically infected (Is), asymptomatically infected
(Ia), quarantined (Q), and recovered (R) compartments.

2.1. Formulation of the model. If we denote the total population by N , then we have

N(t) = S(t) + E(t) + Ia(t) + Is(t) +Q(t) +R(t). (2.1)

The model variables and parameters are introduced in Table 1. The model is mathematically formulated as a system
of ordinary differential equations :

dS

dt
= Λ + γR− (β1E + β2Ia + β3Is)S − µS,

dE

dt
= (β1E + β2Ia + β3Is)S − κE − µE,

dIa
dt

= εκE − ωaIa − µIa,

dIs
dt

= (1− ε)κE − ωsIs − µIs,
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Table 1. Description of the model’s variables and parameters.

Variables/Parameters Description
S(t) Number of susceptible individuals at a time t
E(t) Number of exposed individuals at a time t
Ia(t) Number of asymptomatically infected individuals at a time t
Is(t) Number of symptomatically infected individuals at a time t
Q(t) Number of quarantined individuals at a time t
R(t) Number of recovered individuals at a time t
N Total human population
Λ Rate of recruitment (from birth and immigration)
µ Natural death rate and disease-induced death rate
β1 The transition rate of infection from E class
β2 The transition rate of infection from Ia class
β3 The transition rate of infection from Is class
ε The proportion of E class show no clinical symptoms after the incubation period
κ Exit rate from E class
ωa The recovery rate of individuals in the Ia class
δ The recovery rate of individuals in the Q class
σ The proportion of Is class individuals who have been quarantined
ωs Exit rate from Is class
γ Rate of reduction of the effect of temporary immunity after the recovery

Figure 1. Flow chart of SEIaIsQRS compartmental model.

dQ

dt
= σωsIs − δQ− µQ,

dR

dt
= ωaIa + (1− σ)ωsIs + δQ− γR− µR.

(2.2)

From the sum of the equations of model Eq. (2.2) we have

dN

dt
= Λ− µN. (2.3)
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Model dynamics can be considered in the region below:

Ω =
{

(S,E, Ia, Is, Q,R) ∈ R6
+ : N ≤ Λ

µ

}
. (2.4)

2.2. Positivity and boundedness of solutions.

Theorem 2.1. Let the initial conditions of the model’s variables be given by

{S(0) ≥ 0, E(0) ≥ 0, Ia(0) ≥ 0, Is(0) ≥ 0, Q(0) ≥ 0, R(0) ≥ 0 and N(0) ≥ 0} ∈ Ω.

Then the solution set {S(t), E(t), Ia(t), Is(t), Q(t), R(t) and N(t)} is non-negative in Ω for all time t ≥ 0.

Proof. We use the proof by contradiction to show that the state variable S of the model is positive for all t ≥ 0. Let
that a trajectory crosses the positive cone at time t1 such that:

S(t1) = 0,
dS(t1)

dt
≥ 0, E(t) > 0, Ia(t) > 0,

Is(t) > 0, Q(t) > 0, and R(t) > 0 for all t ∈ (0, t1).

Using the first equation of model (2.2), the first assumption results

dS(t1)

dt
= Λ + γR(t1) > 0, (2.5)

which contradicts the first assumption that dS(t1)
dt < 0. So, S(t) remains positive for all t ≥ 0.

Using the second equation of model (2.2),

dE(t)

dt
= λS(t)− (κ+ µ)E(t), (2.6)

where in above equation λ = β1E + β2Ia + β3Is. Since S(t) is non-negative for all t ≥ 0, we obtain

dE(t)

dt
≥ −(κ+ µ)E(t), (2.7)

Solving the above equation results

E(t) ≥ E(0) exp(−[κ+ µ]t). (2.8)

Clearly, E(t) ≥ 0. Similarly, we can deduce the rest of the dynamic variables of the system remain positive for all
t > 0 and they are:

Ia(t) ≥ Ia(0) exp(−[ωa + µ]t), (2.9)

Is(t) ≥ Is(0) exp(−[ωs + µ]t), (2.10)

Q(t) ≥ Q(0) exp(−[δ + µ]t), (2.11)

R(t) ≥ R(0) exp(−[γ + µ]t). (2.12)

Hence, any solution of the model (2.2) is non-negative for all t ≥ 0. �

Theorem 2.2. All positive solutions described in Theorem 2.1 are bounded.
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Proof. As we have seen before dN
dt = Λ− µN , separating the variables and integrating,

⇒
∫

dN

Λ− µN
=

∫
dt,

⇒ − 1

µ
ln(Λ− µN) = t+ c,

⇒ ln(Λ− µN) = −µt+ C, where C = −µc,
⇒ Λ− µN = A exp(−µt). (2.13)

Which in the Eq. (2.13), A = exp(−µc). It can be written from the (2.13) that

N(t) =
1

µ
(Λ−A exp (−µt)). (2.14)

To get the population size at N0 we put t = 0 in the last equality. So

N(0) =
Λ

µ
− A

µ
=

Λ−A
µ

= N0, (2.15)

⇒ A = Λ− µN0. (2.16)

By replacing (2.16) into (2.14), we get

N(t) =
Λ

µ
− (

Λ− µN0

µ
) exp(−µt). (2.17)

From (2.17), N(t) approaches Λ
µ as t→∞, therefore, the positive solutions of model (2.2) are bounded. �

3. Mathematical analysis of the model

To obtain the equilibrium points, we put the right-hand side of model (2.2) equal to zero, so we have

Λ + γR− (β1E + β2Ia + β3Is)S − µS = 0,

(β1E + β2Ia + β3Is)S − κE − µE = 0,

εκE − ωaIa − µIa = 0,

(1− ε)κE − ωsIs − µIs = 0,

σωsIs − δQ− µQ = 0,

ωaIa + (1− σ)ωsIs + δQ− γR− µR = 0. (3.1)

Our model has both disease-free and endemic equilibria which can be determined by (3.1). We denote the disease-free
equilibrium point DFEP as

Xdfep = (Sdfep, Edfep, Ia dfep, Is dfep, Qdfep, Rdfep) =
(Λ

µ
, 0, 0, 0, 0, 0

)
= (1, 0, 0, 0, 0, 0).
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Furthermore, assuming λ? = β1E + β2Ia + β3Is then the endemic equilibrium point of (EEP ) is denoted by Xeep =
(S∗, E∗, I∗a , I

∗
s , Q

∗, R∗), that

S∗ =
Λ + γR

λ? + µ
,

E∗ =
λ?S

κ+ µ
,

I∗a =
εκE

µ+ ωa
,

I∗s =
(1− ε)κE
µ+ ωs

,

Q∗ =
σωsIs
µ+ δ

,

R∗ =
ωaIa + (1− σ)ωsIs + δQ

µ+ γ
.

(3.2)

3.1. The basic reproduction number of model (2.2). One of the important factors in the investigation of epidemic
diseases is the basic reproduction number R0. This parameter is an indicator to measure the spread of the pathogen
and is the average number of people to whom the infected person can spread the infectious agent. For this aim, we
follow the next-generation matrix method [15]. The compartments that directly caused the spread of COVID-19 are
from the second, third, and fourth equations of model (2.2). These equations can be written as

dy

dt
= Φ(y)−Ψ(y).

Where

y = (E, Ia, Is)
T ,Φ(y) =

(β1E + β2Ia + β3Is)S
0
0

 ,Ψ(y) =

 (µ+ κ)E
−εκE + (µ+ ωa)Ia

−(1− ε)κE + (µ+ ωs)Is

 ,
F and V are the jacobian matrices of Φ and Ψ at the DFEP (Xdfep) respectively, which are given by

F = J(Φ|Xdfep) =

β1 β2 β3

0 0 0
0 0 0

, V = J(Ψ|Xdfep) =

 µ+ κ 0 0
−εκ µ+ ωa 0

−(1− ε)κ 0 µ+ ωs

 ,
R0 will be the largest eigenvalue (the spectral radius) of the matrix FV −1 , thus

R0 =
β1

κ+ µ
+

β2εκ

(κ+ µ)(ωa + µ)
+

β3(1− ε)κ
(κ+ µ)(ωs + µ)

. (3.3)

4. Stability Analysis

We study the global stability of the disease-free equilibrium point using Castilo-Chavez [10]. We rewrite system (2)
as

dx

dt
= F (x, I),

dI

dt
= G(x, I), G(x, 0) = 0.

Where x ∈ R denotes the number of uninfected (S(t)) and I ∈ R5 denotes the number of infected individuals
(E(t), Ia(t), Is(t), Q(t), R(t)). Let U0 = (x?, 0) be the disease-free equilibrium point of this system, where 0 is a zero
vector. The below conditions must be satisfied to guarantee global stability.
(H1): For dx

dt = F (x, 0), 0 is globally stable.

(H2): G(x, I) = AI − G̃(x, I), G̃(x, I) is non-negative for (x, I) ∈ Ω ,
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where A = DIG(x?, 0) is an M-matrix (with off-diagonal elements of A are non-negative) and Ω is the region where
the model makes biological sense. In our case

U0 = (x?, 0) = (1, 0, 0, 0, 0, 0),

and

A =


β1 − (κ+ µ) β2 β3 0 0

εκ −(ωa + µ) 0 0 0
(1− ε)κ 0 −(ωs + µ) 0 0

0 0 σωs −(δ + µ) 0
0 ωa (1− σ)ωs δ −(γ + µ)

 ,
that A is an M-matrix. On the other hand

G(x, I) =


(β1E + β2Ia + β3Is)S − (κ+ µ)E

εκE − (ωa + µ)Ia
(1− ε)κE − (ωs + µ)Is
σωsIs − (δ + µ)Q

ωaIa + (1− σ)ωsIs + δQ− (γ + µ)R

 ,
and

G̃(x, I) =


(β1E + β2Ia + β3Is)(1− S)

0
0
0
0

 ,
which implies that G̃(x, I) ≥ 0 for all (x, I) ∈ Ω. Therefore, we conclude that the disease-free equilibrium point is
globally stable.

Theorem 4.1. Assuming

G∗ = (β1 +
β2εκ

µ+ ωa
+
β3(1− ε)κ
µ+ ωs

)E∗, b0 = G∗ + µ,

b1 = κ+ µ− β1S
∗(κ+ µ > β1S

∗), b2 = ωa + µ, b3 = ωs + µ,

b4 = δ + µ, b5 = γ + µ.

then the endemic equilibrium point (Xeep) is locally asymptotically stable if the following conditions hold:

Q0,Q1,Q2,Q3,Q4 > 0, Q1Q2Q3 > Q2
3 +Q2

1Q4,

(Q1Q4 −Q5)(Q1Q2Q3 −Q2
3 −Q2

1Q4) > Q5(Q1Q2 −Q3)2 +Q1Q2
5.

Proof. The Jacobian matrix of (2.2) at the endemic equilibrium point is given by,

J(Xeep) =


−b0 −β1S

∗ −β2S
∗ −β3S

∗ 0 γ
G∗ −b1 β2S

∗ β3S
∗ 0 0

0 εκ −b2 0 0 0
0 (1− ε)κ 0 −b3 0 0
0 0 0 σωs −b4 0
0 0 ωa (1− σ)ωs δ −b5

 .

The characteristic polynomial of the Jacobian matrix of the model is given by,

P = (ξ + b4)(ξ5 +Q4ξ
4 +Q3ξ

3 +Q2ξ
2 +Q1ξ +Q0),



CMDE Vol. *, No. *, *, pp. 1-17 9

where

Q4 = b0 + b1 + b2 + b3 + b5,

Q3 = b2b5 + b3b5 + b2b3 + b0b5 + b1b5 + b0b2 + b0b3 + b1b2 + b1b3 + b0b1

− β2εκS
∗ − β3(1− ε)κS∗ + β1S

∗G∗,

Q2 = b2b3b5 + b0b2b5 + b0b3b5 + b1b2b5 + b1b3b5 + b0b2b3 + b1b2b3

+ b0b1b5 + b0b1b2 + b0b1b3 − β2εκS
∗(b0 + b3 + b5)− β3(1− ε)κS∗(b0 + b2 + b5)

+ β1S
∗G∗(b2 + b3 + b5) + β2εκS

∗G∗ + β3(1− ε)κS∗G∗,
Q1 = b0b2b3b5 + b1b2b3b5 + b0b1b2b5 + b0b1b3b5 + b0b1b2b3

− β2εκS
∗(b0b5 + b3b5)− β2εκS

∗b0b3 − β3(1− ε)κS∗(b0b5 + b2b5)

− β3(1− ε)κS∗b0b2 + β1S
∗G∗(b2b5 + b3b5) + β1S

∗G∗b2b3

+ β2εκS
∗G∗(b3 + b5) + β3(1− ε)κS∗G∗(b2 + b5)− γ(1− ε)κ(1− σ)ωsG

∗,

Q0 = b0b1b2b3b5 − β2εκS
∗b0b3b5 − β3(1− ε)κS∗b0b2b5 +G∗β1S

∗b2b3b5

+G∗β2S
∗εκb3b5 +G∗β3(1− ε)κS∗b2b5 +G∗γεκωa − γ(1− ε)κ(1− σ)ωsG

∗b2.

It is necessary to note that we assumed γ(1− ε)κG∗(b2 + ξ)σδωs = 0. �

5. Backward bifurcation analysis

In some models, disease does not wipe out simply by reducing R0 and it is necessary to check whether there is a
backward bifurcation or not. Generally, backward bifurcation is a negative concept because the presence of backward
bifurcation makes it more difficult to control the disease.

Theorem 5.1. The model (2.2) shows a backward bifurcation at β1 = β∗1 (i.e R0 = 1) if the parameters satisfy the
condition

κ+ µ <
γ

γ + µ
M,

where

M =
ωaεκ

ωa + µ
+
ωsκ(1− ε)(1− σ)

ωs + µ
+

δσωsκ(1− ε)
(ωs + µ)(δ + µ)

.

Proof. The proof is done using center manifold theory introduced in [9, 11]. Assume

X = (x1, x2, x3, x4, x5, x6)T = (S,E, Ia, Is, Q,R)T ,

and

N = x1 + x2 + x3 + x4 + x5 + x6.

Then the model (2.2) turns into, X ′(t) = F = (f1, f2, f3, f4, f5, f6) that is,

f1 = Λ + γx6 − (β1x2 + β2x3 + β3x4)x1 − µx1,

f2 = (β1x2 + β2x3 + β3x4)x1 − (κ+ µ)x2,

f3 = εκx2 − (ωa + µ)x3,

f4 = (1− ε)κx2 − (ωs + µ)x4,

f5 = σωsx4 − (δ + µ)x5,

f6 = ωax3 + (1− σ)ωsx4 + δx5 − (γ + µ)x6. (5.1)
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Note that β1 has been chosen as a bifurcation parameter and β∗1 is its critical value and setting R0 = 1, we obtain
β∗1T1 + T3 = 1 or β1 = β∗1 = 1−T3

T1
. Where

T1 =
1

κ+ µ
, T2 =

β2εκ

ωa + µ
+
β3(1− ε)κ
ωs + µ

, T3 = T2T1.

The Jacobian of the system (5.1) at the disease-free equilibrium point (Xdfep) with β∗1 is given by,

J(Xdfep) =


−µ −β∗1 −β2 −β3 0 γ
0 −(κ+ µ− β∗1) β2 β3 0 0
0 εκ −(ωa + µ) 0 0 0
0 (1− ε)κ 0 −(ωs + µ) 0 0
0 0 0 σωs −(δ + µ) 0
0 0 ωa (1− σ)ωs δ −(γ + µ)

 .
The Jacobian matrix above has a single zero eigenvalue with all the other eigenvalues having negative real parts.
Hence, based on the center manifold theory approach given by Theorem 3.2 of Castillo-Chavez and Song [11] we can
analyze the system of Equations (5.1).
Let the right-eigenvector of the Jacobian matrix J(Xdfep) be in the form of W = (w1, w2, w3, w4, w5, w6)T , thus

−µw1 − β∗1w2 − β2w3 − β3w4 + γw6 = 0,

−(κ+ µ− β∗1)w2 + β2w3 + β3w4 = 0,

εκw2 − (ωa + µ)w3 = 0,

(1− ε)κw2 − (ωs + µ)w4 = 0,

σωsw4 − (δ + µ)w5 = 0,

ωaw3 + (1− σ)ωsw4 + δw5 − (γ + µ)w6 = 0.

From the above, it is easy to find that w1 through w6 in terms of w2. Thus

w1 =
1

µ

(
− (κ+ µ)

γ

γ + µ
M

)
w2,

w2 = w2 > 0,

w3 =
εκ

ωa + µ
w2,

w4 =
(1− ε)κ
ωs + µ

w2,

w5 =
σωs(1− ε)κ

(ωs + µ)(δ + µ)
w2,

w6 =
1

γ + µ
Mw2.

Similarly, the left-eigenvector of J(Xdfep) is considered as V = (v1, v2, v3, v4, v5, v6) satisfies the following set of
equations:

−µv1 = 0,

−β∗1v1 − (κ+ µ− β∗1)v2 + εκv3 + (1− ε)κv4 = 0,

−β2v1 + β2v2 − (ωa + µ)v3 + ωav6 = 0,

−β3v1 + β3v2 − (ωs + µ)v4 + σωsv5 + (1− σ)ωsv6 = 0,

−(δ + µ)v5 + δv6 = 0,

γv1 − (γ + µ)v6 = 0. (5.2)
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Then solving Equation (5.2), we get

v1 = v5 = v6 = 0, v3 =
β2v2

ωa + µ
, v4 =

β3v2

ωs + µ
, v2 = v2 > 0.

If

v2w2 =

(
1 +

β2εκ

(ωa + µ)2
+
β3(1− ε)κ
(ωs + µ)2

)−1

> 0,

then the left-eigenvector and right-eigenvector satisfy in the condition of

V.W = 1.

The first bifurcation coefficient at Xdfep is as follows:

a =

6∑
k,i,j=1

vkwiwj
∂2fk
∂xi∂xj

(Xdfep, β
∗
1)

=

6∑
i,j=1

[
v2wiwj

∂2f2

∂xi∂xj
(Xdfep, β

∗
1) + v3wiwj

∂2f3

∂xi∂xj
(Xdfep, β

∗
1) + v4wiwj

∂2f4

∂xi∂xj
(Xdfep, β

∗
1)

]
. (5.3)

Algebraic calculations show that

∂2f2

∂x1∂x2
(Xdfep, β

∗
1) = β∗1 ,

∂2f2

∂x1∂x3
(Xdfep, β

∗
1) = β2,

∂2f2

∂x1∂x4
(Xdfep, β

∗
1) = β3,

∂2f2

∂x2∂x1
(Xdfep, β

∗
1) = β∗1 ,

∂2f2

∂x3∂x1
(Xdfep, β

∗
1) = β2,

∂2f2

∂x4∂x1
(Xdfep, β

∗
1) = β3. (5.4)

The rest of the second derivatives for a in (5.3), then a is given by

a =
2v2

µ

(
− (κ+ µ) +

γ

γ + µ
M

)[
β∗1 +

εκβ2

ωa + µ
+

(1− ε)κβ3

ωs + µ

]
w2

2.

Since

β∗1 +
εκβ2

ωa + µ
+

(1− ε)κβ3

ωs + µ
,

is always positive, then the bifurcation coefficient a can be positive if

−(κ+ µ) +
γ

γ + µ
M > 0.

On the other hand, the second bifurcation coefficient at Xdfep and bifurcation parameter β∗1 is given by,

b =

6∑
k,j=1

vkwj
∂2fk
∂xj∂β∗1

(Xdfep, β
∗
1)

=

6∑
j=1

[
v2wj

∂2f2

∂xj∂β∗1
(Xdfep, β

∗
1) + v3wj

∂2f3

∂xj∂β∗1
(Xdfep, β

∗
1) + v4wj

∂2f4

∂xj∂β∗1
(Xdfep, β

∗
1)

]
= v2w2.

Clearly, b > 0. In addition, if we set M = 0 then a will be negative which means the model (5.1) will not undergo a
backward bifurcation at R0 = 1. �



12 H. GHOLAMI CHAHKAND, M. GACHPAZAN, AND M. ERFANIAN

6. Sensitivity index and numerical analysis

Sensitivity analysis reveals the influence of the model parameters, which have the most significant impact on the
basic reproduction number of the COVID-19 model system. It is derivable to the parameter α, the normalized forward
sensitivity index of basic reproduction number R0 is denoted by ΥR0

α = ∂R0

∂α ×
α
R0

We repeated the above formula for each of the parameters on which the basic generating number depended and we
will have the following relations:

ΥR0

β1
=

β1(ωa + µ)(ωs + µ)

β1(ωa + µ)(ωs + µ) + β2εκ(ωs + µ) + β3(1− ε)κ(ωa + µ)
> 0,

ΥR0

β2
=

β2εκ(ωs + µ)

β1(ωa + µ)(ωs + µ) + β2εκ(ωs + µ) + β3(1− ε)κ(ωa + µ)
> 0,

ΥR0

β3
=

β3(1− ε)κ(ωa + µ)

β1(ωa + µ)(ωs + µ) + β2εκ(ωs + µ) + β3(1− ε)κ(ωa + µ)
> 0,

ΥR0
κ =

−β1κ(ωa + µ)(ωs + µ) + β2εκ
2(ωs + µ) + β3(1− ε)κ2(ωa + µ)

(κ+ µ)[β1(ωa + µ)(ωs + µ) + β2εκ(ωs + µ) + β3(1− ε)κ(ωa + µ)]
,

ΥR0
ε =

β2εκ(ωs + µ)− β3εκ(ωa + µ)

β1(ωa + µ)(ωs + µ) + β2εκ(ωs + µ) + β3(1− ε)κ(ωa + µ)
,

ΥR0
ωa

=
−β2εκωa(ωs + µ)

(ωa + µ)[β1(ωa + µ)(ωs + µ) + β2εκ(ωs + µ) + β3(1− ε)κ(ωa + µ)]
< 0,

ΥR0
ωs

=
−β3(1− ε)κωs(ωa + µ)

(ωs + µ)[β1(ωa + µ)(ωs + µ) + β2εκ(ωs + µ) + β3(1− ε)κ(ωa + µ)]
< 0,

ΥR0
µ =

−µ[β1(ωa + µ)2(ωs + µ)2 + β2εκ(2µ+ κ+ ωa)(ωs + µ)2 + β3(1− ε)κ(2µ+ κ+ ωs)(ωa + µ)2]

(κ+ µ)(ωa + µ)(ωs + µ)[β1(ωa + µ)(ωs + µ) + β2εκ(ωs + µ) + β3(1− ε)κ(ωa + µ)]
< 0.

Therefore, according to the obtained results, it can be written in summary form:

ΥR0
p > 0 for p = β1, β2, β3,

ΥR0
q < 0 for q = ωa, ωs, µ,

Also, it is not possible to give a definite opinion about ΥR0
ε and ΥR0

κ because their sign depends on the values of the
parameters.
Therefore, with the increase of β1, β2 and β3 parameters, the basic reproduction number R0 also increases, while
with the increase of ωa, ωs and µ the basic reproduction number decreases. Numerical results for our model were
performed using the parameter values in Table 2. All parameters are assumed. Simulation for the model (2.2) is done
using Matlab R2016b encoded with an ODE45 solver, with an initial population of S(0) = 23, E(0) = 18, Ia(0) = 19,
Is(0) = 39, Q(0) = 5, R(0) = 38. Figure 2 shows when the proportion of symptomatically infected class individuals
who have been quarantined (σ) increases, the population of recovered (R) and quarantined (Q) compartments in-
creases, and the population of asymptomatically infected (Ia), symptomatically infected (Is) and exposed (E) classes
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Table 2. Model parameter values.

Parameter Value
Λ 0.35
β1 0.005
β2 0.01
β3 0.2
ε 0.7
κ 0.4
δ 0.05
ωa 0.03
σ 0.6
ωs 0.08
γ 0.001
µ 0.000036

Figure 2. Solution curves depicting the impact of the proportion of symptomatically infected class
individuals who have been quarantined (σ) on all of the compartments of the model (2.2).

decreases. It implies that quarantine helps to limit the spread of COVID-19.
It can be seen in Figure 3, as the recovery rate of individuals in the quarantined class (δ) increases, the population

of S, E, Ia and Is compartments decreases, and the population of Q and R compartments increases. As displayed
in Figure 4, over time, recovered individuals lose their immunity against the disease thus increasing the amount of
rate of reduction of the effect of temporary immunity after the recovery (γ) added to the number of exposed (E),
infected (Ia and Is) and quarantined (Q) individuals. It implies that the reversibility of the disease causes the disease
to spread again and thus impose a cost on the economy of the countries. Figure 5 shows that when the recovery rate
of individuals in the asymptomatically infected class (ωa) is increasing, the population of recovered individuals (R)
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Figure 3. Solution curves depicting the impact of the recovery rate of individuals in the quarantined
class (δ) on all of the compartments of the model (2.2).

Figure 4. Solution curves depicting the impact of rate of reduction of the effect of temporary im-
munity after the recovery (γ) on all of the compartments of the model (2.2).
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Figure 5. Solution curves depicting the impact of the recovery rate of asymptomatically infected
individuals class (ωa) on all of the compartments of the model (2.2).

increases and the population of asymptomatically infected individuals (Ia) decreases. It can be seen in Figure 6, that

Figure 6. Solution curves depicting the impact of the exit rate from symptomatically infected class
(ωs) on symptomatically infected (Is), quarantined (Q) and recovered (R) compartments of the model
(2.2).

when the exit rate from the symptomatically infected class (ωs) increases, the population of quarantined (Q) and
recovered (R) compartments increases.

7. Conclusion

In this paper, we consider a mathematical model comprised of six compartments as, susceptible (S), exposed (E),
symptomatically infected (Is), asymptomatically infected (Ia), quarantined (Q), and recovered (R). We proved the
boundedness of model solutions and obtained both the disease-free equilibrium point and the endemic equilibrium
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point for our model. By using the next-generation matrix method, we calculated the basic reproduction number R0.
We proved our model at the disease-free equilibrium point is globally stable and at the endemic equilibrium point is
locally asymptotically stable. We applied the center manifold theorem to analyze backward bifurcation. After that,
we briefly discussed sensitivity analysis and numerical simulations also confirmed that quarantine helps to limit the
COVID-19 virus.
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