- [1] A. Ahmed, B. Salam, M. Mohammad, A. Akgul, and S. H. Khoshnaw, Analysis coronavirus disease (COVID-19) model using numerical approaches and logistic model, Aims Bioeng., 7(3) (2020), 130146.
- [2] AIDS epidemic update: December 2006, [Accessed 2006 December 15]; Available from: https://data.unaids.org/pub/epireport/2006/2006 epiupdate en.pdf.
- [3] A. Akgu¨l, N. Ahmed, A. Raza, Z. Iqbal, M. Rafiq, D. Baleanu, and M. A. U. Rehman, New applications related to Covid-19, Res. Phys., 20 (2021), 103663.
- [4] P. N. A. Akuka, B. Seidu, and C. S. Bornaa, Mathematical analysis of COVID-19 transmission dynamics model in Ghana with double-dose vaccination and quarantine, Computational and mathematical methods in medicine, 2022.
- [5] A. D. Algarni, A. B. Hamed, M. Hamdi, H. Elmannai, and S. Meshoul, Mathematical COVID-19 model with vaccination: a case study in Saudi Arabia, PeerJ Comput. Sci., 8 (2022), e959.
- [6] R. M. Anderson and R. M. May, Infectious diseases of humans: dynamics and control, Oxford University Press, 1992.
- [7] N. T. J. Bailey, The mathematical theory of infectious diseases and its applications, 2nd ed. Scotland: Richard Griffin and Company, 1975.
- [8] C. Baishya, R. N. Premakumari, M. E. Samei, and M. K. Naik, Chaos control of fractional order nonlinear bloch equation by utilizing sliding mode controller, Chaos, Solitons and Fractals, 174 (2023), 113773.
- [9] J. Carr, Applications Centre Manifold Theory, Springer-Verlog, New York, 1981.
- [10] C. C. Chavez, Z. Feng, and W. Huang, On the computation of R0 and its role in global stability, IMA Volumes in Mathematics and Its Applications, 125 (2002), 229250.
- [11] C. C. Chavez and B. Song, Dynamical models of tuberculosis and their application, Math Biosci Eng, (2004), 361-404.
- [12] G. B. Chapman, M. Li, J. Vietri, Y. Ibuka, D. Thomas, H. Yoon, and A. P. Galvani, Using game theory to examine incentives in influenza vaccination behavior, Psychological science, 23(9) (2012), 1008-1015.
- [13] A. N. Chatterjee and F. Al Basir, A model for SARS-CoV-2 infection with treatment, Computational and mathematical methods in medicine, 2020.
- [14] M. Das, G. Samanta, and M. D. L. Sen, A fractional order model to study the effectiveness of government measures and public behaviours in COVID-19 pandemic, Mathematics, 2022.
- [15] P. V. Driessche and J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Mathematical bioscience, 180 (2002), 29-48.
- [16] M. Farman, A. Akgu¨l, A. Ahmad, D. Baleanu, and M. U. Saleem, Dynamical transmission of coronavirus model with analysis and simulation, CMES[1] Computer Modeling in Engineering and Sciences, (2021), 753769.
- [17] M. Farman, A. Aqeel, A. Akgu¨l, M. U. Saleem, M. Naeem, and D. Baleanu, Epidemiological analysis of the coronavirus disease outbreak with random effects, Computers, Materials, Continua, (2021), 32153227.
- [18] F. Fenner, D. Henderson, I. Arita , Z. Jezek, and I. Ladnyi, Smallpox vaccine and vaccination in the intensified smallpox eradication programme, Geneva: World Health Organization, (1988), 539-592.
- [19] R. Ghostine, M. Gharamti, S. Hassrouny, and I. Hoteit, An extended SEIR model with vaccination for forecasting the COVID-19 pandemic in Saudi Arabia using an ensemble Kalman filter, Mathematics, 2021.
- [20] K. E. Hail, M. Khalid, and A. Ouhinou, Early-confinement strategy to tackling COVID-19 in Morocco; a mathematical modelling study, RAIRO-Oper. Res., 56 (2022), 4023-4033.
- [21] A. W. Hickman, R. J. Jaramillo, J. F. Lechner, and N. F. Johnson, α -Particle induced p53 protein expression in a rat lung epithelial cell strain, Cancer Res, 54(22) (1994), 5797-5800.
- [22] M. Houas and M. E. Samei, Existence and stability of solutions for linear and nonlinear Damping of q-fractional Duffing-Rayleigh problem, Mediterranean Journal of Mathematics, 2023.
- [23] N. F. Johnson, N. Velasquez, N. J. Restrepo, R. Leahy, N. Gabriel, S. E. Oud, M. Zheng, P. Manrique, S. Wuchty, and Y. Lupu, The online competition between pro- and anti-vaccination views, Nature, 582 (2020), 230-233.
- [24] T. Kherraz, M. Benbachir, M. Lakrib, M. E. Samei, M. K. A. Kaabar, and S. A. Bhanotar, Existence and uniqueness results for a fractional boundary value problems with multiple orders of fractional derivatives and integrals, SSRN Electronic Journal, 2023.
- [25] B. Mohammadaliee, V. Roomi, and M. E. Samei, SEIARS model for analyzing COVID-19 pandemic process via ψ-Caputo fractional derivative and numerical simulation, Scientific Reports, 2024.
- [26] A. Pandey, M. C. Fitzpatrick, S. M. Moghadas, T. N. Vilches, C. Ko, A. Vasan, and A. P. Galvani, Modelling the impact of a high-uptake bivalent booster scenario on the COVID-19 burden and health care costs in New York City, The Lancet Regional Health-Americas, 2023.
- [27] M. Parsamanesh and M. Erfanian, Global dynamics of an epidemic model with standard incidence rate and vaccination strategy, Chaos, Solitons and Fractals , 117 (2018), 192199.
- [28] M. Parsamanesh and M. Erfanian, Stability and bifurcations in a discretetime epidemic model with vaccination and vital dynamics, BMC Bioinformatics, 2020.
- [29] M. Parsamanesh and M. Erfanian, Stability and bifurcations in a discrete-time SIVS model with saturated incidence rate, Chaos, Solitons and Fractals, 150 (2021), 111178.
- [30] M. Parsamanesh and M. Erfanian, Global dynamics of a mathematical model for propagation of infection diseases with saturated incidence rate, Journal of Advanced Mathematical Modeling, 2021.
- [31] J. S. Peiris, K. Y. Yuen, A. D. Osterhaus, and K. St¨ohr, The severe acute respiratory syndrome, The New England Journal of Medicine, 349(25) (2003), 2431-2441.
- [32] A. Remuzzi and G. Remuzzi, COVID-19 and Italy: what next, Lancet (London, England), 2020.
- [33] S. Rezapour, H. Mohammadi, and M. E. Samei, SEIR epidemic model for COVID-19 transmission by Caputo derivative of fractional order, Advances in Difference Equations, 2020.
- [34] S. W. Teklu, Mathematical analysis of the transmission dynamics of COVID-19 infection in the presence of intervention strategies, Journal of biological dynamics, 16(1) (2022), 640-664.
- [35] A. Zangrillo, L. Beretta, P. Silvani, S. Colombo, A. M. Scandroglio, and A. Dell’Acqua, et al, Fast reshaping of intensive care unit facilities in a large metropolitan hospital in Milan, Italy: facing the COVID-19 pandemic emergency. Critical care and resuscitation, journal of the Australasian Academy of Critical care Medicine, 22(2) (2020), 91-94.
- [36] H. Zhu, L. Wei, and P. Niu, The novel coronavirus outbreak in Wuhan, China, Global health research and policy, 2020.
|