تعداد نشریات | 43 |
تعداد شمارهها | 1,275 |
تعداد مقالات | 15,740 |
تعداد مشاهده مقاله | 51,839,577 |
تعداد دریافت فایل اصل مقاله | 14,674,311 |
SEIaIsQRS EPIDEMIC MODEL FOR COVID-19 BY USING COMPARTMENTAL ANALYSIS AND NUMERICAL SIMULATION | ||
Computational Methods for Differential Equations | ||
مقالات آماده انتشار، پذیرفته شده، انتشار آنلاین از تاریخ 16 مرداد 1403 اصل مقاله (955.59 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22034/cmde.2024.58656.2482 | ||
نویسندگان | ||
Hossein Gholami1؛ Morteza Gachpazan1؛ Majid Erfanian* 2 | ||
1Department of Applied Mathematics, School of Mathematical Sciences, Ferdowsi University of Mashhad, Mashhad, Iran. | ||
2Department of Science, School of Mathematical Sciences, University of Zabol, Zabol, Iran. | ||
چکیده | ||
In this paper, we developed a SEIaIsQRS epidemic model for COVID-19 by using compartmental analysis. In this article, the dynamics of COVID-19 are divided into six compartments: susceptible, exposed, asymptomatically infected, symptomatically infected, quarantined, and recovered. The positivity and boundedness of the solutions have been proven. We calculated the basic reproduction number for our model and found both disease-free and endemic equilibria. It is shown that the disease-free equilibrium is globally asymptotically stable. We explained under what conditions, the endemic equilibrium point is locally asymptotically stable. Additionally, the center manifold theorem is applied to examine whether our model undergoes a backward bifurcation at R0 = 1 or not. To finish, we have confirmed our theoretical results by numerical simulation. | ||
کلیدواژهها | ||
Backward bifurcation؛ Globally asymptotically stable؛ Basic reproduction number | ||
آمار تعداد مشاهده مقاله: 50 تعداد دریافت فایل اصل مقاله: 123 |