- [1] M. E. Ahmadi, M. Berrajaa, and A. Ayoujil, Existence of two solutions for Kirchhoff-double phase problems with a small perturbation without (AR)-condition, Contin. Dyn. Syst. Ser. S., 18(1) (2025), 169-181.
- [2] A. Ambrosetti and P. H. Rabinowitz, Dual variational methods in critical point theory and applications, J. Funct. Anal., 14(4) (1973), 349–381.
- [3] R. Arora, A. Fiscella, T. Mukherjee, and P. Winkert, On double phase Kirchhoff problems with singular nonlinearity, Adv. Nonlinear Anal., 12 (2023), 20220312.
- [4] J. F. Bonder, Multiple positive solutions for quasilinear elliptic problems with sign-changing nonlinearities, Abstract Appl. Anal., 2004(12) (2004), 1047–1055.
- [5] A. C. Blanco, L. Gasinski, P. Harjulehto, and P. Winkert, A new class of double phase variable exponent problems: Existence and uniqueness, J. Differential Equations., 323 (2022), 182–288.
- [6] F. X. Cao, B. Ge, and Y. W. Shou, Existence and nonexistence of solutions for the double phase problem, Results in Mathematics, J. Differential Equations., 76(3) (2021), 132.
- [7] L. Cherfils and Y. Ill’yasov, On the stationary solutions of generalized reaction diffusion equations with p&qLaplacian, Commun. Pure Appl. Anal., 4(1) (2005), 9–22.
- [8] M. Chipot and B. Lovat, Some remarks on nonlocal elliptic and parabolic problems, Nonlinear Anal., 30(7) (1997), 4619–4627.
- [9] N. T. Chung, Existence of positive solutions for a class of Kirchhoff type systems involving critical exponents, Filomat., 33(1) (2019), 267–280.
- [10] N. T. Chung and Z. Naghizadeh, Multiplicity of solutions for a class of fourth-order elliptic equations of p(x)Kirchhoff type, Math. Slovaca., 71(6) (2021), 1441–1458.
- [11] P. Chen and Y. Zhang, Existence and multiplicity results for Kirchhoff-type problem with sublinear nonlinearity, Appl. Math. Letters., 114 (2021), 106900.
- [12] C. Farkas, A. Fiscella, and P. Winkert, On a class of critical double phase problems, J. Math. Anal. Appl., 515 (2022), 126420.
- [13] Y. Feng, S. Shang, and Z. Bai, Existence of the solution for a double phase system with convex nonlinearities, J. Nonlinear Math. Phys., 31(1) (2024), 15.
- [14] A. Fiscella and A. Pinamonti, Existence and multiplicity results for Kirchhoff-type problems on a double-phase setting, Mediterr. J. Math., 20 (2023), 23.
- [15] U. Guarnotta, R. Livrea, and P. Winkert, The sub-supersolution method for variable exponent double phase systems with nonlinear boundary conditions, Rend. Lincei Mat. Appl., 34(3) (2023), 617–639.
- [16] M. K. Hamdani, A. Harrabi, F. Mtiri, and D. D. Repov˘s, Existence and multiplicity results for a new p(x)Kirchhoff problem, Nonlinear Anal. (TMA), 190 (2020), 111598.
- [17] G. Kirchhoff, Mechanik, Teubner, Leipzig, Germany, 1883.
- [18] W. Liu and G. Dai, Existence and multiplicity results for double phase problem, J. Differential Equations., 265 (2018), 4311–4334.
- [19] T. F. Ma, Remarks on an elliptic equation of Kirchhoff type, Nonlinear Anal., 63 (2005), 1967–1977.
- [20] K. Perera and Z. Zhang, Nontrivial solutions of Kirchhoff-type problems via the Yang index, J. Differential Equations., 221(1) (2006), 246–255.
- [21] G. Marino and P. Winkert, Existence and uniqueness of elliptic systems with double phase operators and convection terms, J. Math. Anal. Appl., 492(1) (2020), 124423.
- [22] K. Perera, Multiple positive solutions for a class of quasilinear elliptic boundary-value problems, Electronic J. Differ. Equ., 2003(07) (2003), 1–5.
- [23] M. Struwe, Variational methods: Applications to nonlinear partial differential equations and Hamiltonian systems, 34(4) (2008).
- [24] V. V. Zhikov, On Lavrentiev’s phenomenon, Russian J. Math. Phys., 3(0) (1995), 249–269.
- [25] V. V. Zhikov, On some variational problems, Russian J. Math. Phys., 5(1) (1997), 249–269.
|