- [1] T. Ak, A. Saha, S. Dhawan, and A. H. Kara, Investigation of Coriolis effect on oceanic flows and its bifurcation via geophysical Korteweg–de Vries equation, Numer. Methods Partial Differ. Equ., 36(6) (2020), 1234-1253.
- [2] J. T. Allen, D. A. Smeed, A. J. G. Nurser, J. W. Zhang, and M. Rixen, Diagnosis of vertical velocities with the QG omega equation: An examination of the errors due to sampling strategy, Deep-Sea Res. I: Oceanogr. Res. Pap., 48(2) (2001), 315-346.
- [3] A. Amemiya, M. Shlok, and T. Miyoshi, Application of recurrent neural networks to model bias correction: Idealized experiments with the Lorenz-96 model, J. Adv. Model. Earth Syst., 15(2) (2023), e2022MS003164.
- [4] J. D. Annan and J. C. Hargreaves, Efficient parameter estimation for a highly chaotic system, Tellus A: Dyn. Meteorol. Oceanogr., 56(5) (2004), 520-526.
- [5] H. Badawi, O. Abu Arqub, and N. Shawagfeh, Stochastic integrodifferential models of fractional orders and Leffler nonsingular kernels: well-posedness theoretical results and Legendre Gauss spectral collocation approximations, Chaos Solit. Fractals: X, 10 (2023), 100091.
- [6] D. Billingsley, Review of QG theory—Part II: The omega equation, Natl. Wea. Dig., 21(2) (1997), 43-51.
- [7] J. Brajard, A. Carrassi, M. Bocquet, and L. Bertino, Combining data assimilation and machine learning to emulate a dynamical model from sparse and noisy observations: A case study with the Lorenz 96 model, J. Comput. Sci., 44 (2020), 101171.
- [8] D. S. Broomhead, R. Jones, G. P. King, and E. R. Pike, Singular system analysis with application to dynamical systems, In Chaos, noise and fractals, CRC Press, (2020), 15-27.
- [9] N. Črnjarić-Žic, S. Maćešić, and I. Mezić Koopman operator spectrum for random dynamical systems, J. Nonlinear Sci., 30 (2020), 2007-2056.
- [10] G. S. Duane, Synchronized chaos in extended systems and meteorological teleconnections, PRE, 56(6) (1997), 6475.
- [11] D. J. Gagne, H. M. Christensen, A. C. Subramanian, and A. H. Monahan, Machine learning for stochastic parameterization: Generative adversarial networks in the Lorenz’96 model, J. Adv. Model. Earth Syst., 12(3) (2020), e2019MS001896.
- [12] N. Gkrekas, Applying Laplace Transformation on Epidemiological Models as Caputo Derivatives, Math. Biol. Bioinform., 19(1) (2024), 61-76.
- [13] W. He and J. Cao, Generalized synchronization of chaotic systems: an auxiliary system approach via matrix measure, Chaos, 19(1) (2009), 61-76.
- [14] J. R. Horton and G. J. Hakim, An introduction to dynamic meteorology, Academic Press, 88 (2013).
- [15] B. J. Hoskins, I. Draghici, and H. C. Davies, A new look at the ω-equation, Q. J. R. Meteorol. Soc., 104(439) (1978), 31-38.
- [16] B. Jiao, L. Ran, N. Li, R. Cai, T. Qu, and Y. Zhou, Comparative Analysis of the Generalized Omega Equation and Generalized Vertical Motion Equation, Adv. Atmos. Sci., 40(2023), 856-873.
- [17] A. Karimi and M. R. Paul, Extensive chaos in the Lorenz-96 model, Chaos, 20(4) (2010).
- [18] O. K. Koriko, K. S. Adegbie, A. S. Oke, and I. L. Animasaun. , Exploration of Coriolis force on motion of air over the upper horizontal surface of a paraboloid of revolution, Phys. Scr., 95(3) (2020), 035210.
- [19] D. J. Lea, M. R. Allen, and T. W. Haine, Sensitivity analysis of the climate of a chaotic system, Tellus A: Dyn. Meteorol. Oceanogr., 52(5) (2000), 523-532.
- [20] E. N. Lorenz, Deterministic nonperiodic flow, JAS, 20(2) (1963), 130-141.
- [21] E. N. Lorenz and K. Haman, The essence of chaos, Pure Appl. Geophys., 147(3) (1996), 598-599.
- [22] B. Maayah, O. Abu Arqub, S. Alnabulsi, and H. Alsulami, Numerical solutions and geometric attractors of a fractional model of the cancer-immune based on the Atangana-Baleanu-Caputo derivative and the reproducing kernel scheme, Chin. J. Phys., 80 (2022), 463-483.
- [23] B. Maayah and O. Abu Arqub, Adaptive the Dirichlet model of mobile/immobile advection/dispersion in a time-fractional sense with the reproducing kernel computational approach: Formulations and approximations, Int. J. Mod. Phys. B, 37(18) (2023), 2350179.
- [24] B. Maayah, A. Moussaoui, S. Bushnaq, and O. Abu Arqub, The multistep Laplace optimized decomposition method for solving fractional-order coronavirus disease model (COVID-19) via the Caputo fractional approach, Demonstr. Math., 55(1) (2022), 963-977.
- [25] C. C. Maiocchi, V. Lucarini, A. Gritsun, and Y. Sato, Heterogeneity of the attractor of the Lorenz’96 model: Lyapunov analysis, unstable periodic orbits, and shadowing properties, Phys. D: Nonlinear Phenom., 457 (2024), 133970.
- [26] D. T. Mihailović, G. Mimić, and I. Arsenić, Climate predictions: The chaos and complexity in climate models, Adv. Meteorol., (2014).
- [27] H. Millán, A. Kalauzi, M. Cukic, and R. Biondi, Nonlinear dynamics of meteorological variables: Multifractality and chaotic invariants in daily records from Pastaza, Ecuador, Theor. Appl. Climatol., 102 (2002), 75-85.
- [28] C. Mou, Z. Wang, D. R. Wells, X. Xie, and T. Iliescu, Reduced order models for the quasi-geostrophic equations: A brief survey, Fluids, 6(1) (2020), 16.
- [29] I. Petromichelakis and I. A. Kougioumtzoglou, Addressing the curse of dimensionality in stochastic dynamics: A Wiener path integral variational formulation with free boundaries, Proc. R. Soc. A, 476(2243) (2020), 20200385.
- [30] B. Ramadevi and K. Bingi, Chaotic Time Series Forecasting Approaches Using Machine Learning Techniques: A Review, Symmetry, 10 (2022), 955.
- [31] I. Rizos and N. Gkrekas, Can a mathematical model describe the main problems of the modern world?, U.Porto J. Eng., 10(1) (2024), 59-68.
- [32] I. Rizos and N. Gkrekas, Teaching and learning sciences within the COVID-19 pandemic era in a Greek university department, U. Porto J. Eng., 8(1) (2022), 73-83.
- [33] J. L. Rodrigo, On the evolution of sharp fronts for the quasi-geostrophic equation, Commun. Pure Appl. Math., 58(6) (2005), 821-866.
- [34] A. M. Selvam, Nonlinear dynamics and chaos: applications in meteorology and atmospheric physics, Self-organized Criticality and Predictability in Atmospheric Flows: The Quantum World of Clouds and Rain, Springer, (2017), 1-40.
- [35] B. W. Shen, R. A. Pielke Sr., X. Zeng, J. J. Baik, S. Faghih-Naini, J. Cui, R. Atlas, and T. A. L. Reyes, Is Weather Chaotic? Coexisting Chaotic and Non-chaotic Attractors Within Lorenz Models, In C. H. Skiadas, Y. Dimotikalis (eds) 13th Chaotic Modeling and Simulation International Conference, CHAOS 2020, Springer Proceedings in Complexity, (2020).
- [36] Q. Sun, T. Miyoshi, and S. Richard, Control simulation experiments of extreme events with the Lorenz-96 model, Nonlin. Processes Geophys., (2022), 1-18.
- [37] G. F. Weber, Information Dynamics in Complex Systems Negates a Dichotomy between Chance and Necessity, Information, 11 (2020), 245.
- [38] D. S. Wilks, Effects of stochastic parametrizations in the Lorenz’96 system, Q. J. R. Meteorol. Soc., 131(606) (2005), 389-407.
- [39] J. Wu, The quasi-geostrophic equation and its two regularizations, Commun. Partial Differ. Equ., 27(5-6) (2002), 1161-1181.
- [40] X. Yin, Q. Liu, S. Ma, and S. Bai, Solitonic interactions for Rossby waves with the influence of Coriolis parameters, Results Phys., 28 (2021), 104593.
- [41] Y. Zhang, Z. Hua, H. Bao, H. Huang, and Y. Zhou, An n-dimensional chaotic system generation method using parametric Pascal matrix, IEEE Trans. Ind. Inform., 18(12) (2022), 8434-8444.
- [42] R. Zhang and L. Yang, Theoretical analysis of equatorial near-inertial solitary waves under complete Coriolis parameters, AOS, 40 (2021), 54-61.
- [43] Y. Zheng and N. Li, Non-asymptotic identification of linear dynamical systems using multiple trajectories, IEEE Control Syst. Lett., 5(5) (2020), 1693-1698.
|