تعداد نشریات | 44 |
تعداد شمارهها | 1,304 |
تعداد مقالات | 15,975 |
تعداد مشاهده مقاله | 52,340,167 |
تعداد دریافت فایل اصل مقاله | 15,105,968 |
برآورد فرسایش کنار رودخانهای و تعیین عوامل موثر در بازه پلالماس-گیلانده رودخانه بالخلوچای اردبیل | ||
هیدروژئومورفولوژی | ||
دوره 11، شماره 40، مهر 1403، صفحه 101-87 اصل مقاله (1.99 M) | ||
نوع مقاله: پژوهشی | ||
شناسه دیجیتال (DOI): 10.22034/hyd.2024.61311.1735 | ||
نویسندگان | ||
اباذر اسمعلی عوری* 1؛ آرزو اسحاقزاده2؛ شکراله اصغری3؛ رئوف مصطفیزاده4 | ||
1استاد، گروه مرتع و آبخیزداری، دانشگاه محقق اردبیلی | ||
2دانشآموخته کارشناسی ارشد مهندسی آبخیزداری، دانشکده کشاورزی و منابع طبیعی، دانشگاه محقق اردبیلی، اردبیل، ایران | ||
3استاد گروه علوم و مهندسی خاک، دانشکده کشاورزی و منابع طبیعی، دانشگاه محقق اردبیلی، اردبیل، ایران | ||
4دانشیار گروه منابع طبیعی و عضو پژوهشکده مدیریت آب، دانشکده کشاورزی و منابع طبیعی، دانشگاه محقق اردبیلی، اردبیل، ایران | ||
چکیده | ||
تعیین وسعت فرسایش کناره رودخانهای خاک و نمایش آن بهصورت نقشه در محیط GIS، در مدیریت بهینه از منابع آب و خاک موثر است. هدف تحقیق حاضر تعیین محدوده فرسایش رودخانهای از روی عکسهای هوایی، مدلسازی رگرسیونی و تعیین عوامل موثر بر توسعه فرسایش کنار رودخانهای با استفاده از دادههای مکانی مختلف فیزیوگرافی، هیدرولوژی، زمینشناسی و محیطی در بازههایی از رودخانه بالخلوچای در استان اردبیل است. ابتدا پارامترهای موثر در ایجاد فرسایش کنار رودخانهای موجود در منطقه شامل عوامل توپوگرافی، خاک و زمین، هیدرولوژی، تغییرات کاربری محاسبه شدند. در این راستا، متغیرهای مورد مطالعه در چهار مقطع زمانی 1334 با استفاده از عکسهای هوایی، سال 1359 با استفاده از تصاویر ماهوارهای TM، سالهای 1389 و 1392 با تصاویر Google Earth تهیه شد و سطح موثر فرسایش رودخانهای مورد مقایسه قرار گرفت. سپس با استفاده از متغیرهای مستقل (شامل عوامل توپوگرافی، هیدرولوژی، فرسایش پذیری خاک و عوامل زمینی) و سطح موثر فرسایش رودخانهای بهعنوان متغیر وابسته، تجزیه و تحلیل رگرسیونی چند متغیره در نرمافزار SPSS انجام و مدلهای مناسب برآورد مقدار فرسایش کنار رودخانهای مختلف بهدست آمدند. بر اساس نتایج تحلیل رگرسیونی، پارامترهای محیط بازه، دبی اوج، مساحت تحت کشت زراعت آبی، زمان تمرکز، پوشش مرتع و مناطق مسکونی نقش مهمتری در تشدید فرسایش کنار رودخانهای داشته اند. | ||
کلیدواژهها | ||
مورفولوژی رودخانه؛ فرسایش کناری رودخانه؛ رگرسیون چندمتغیره؛ حوضه بالخلوچای؛ استان اردبیل | ||
مراجع | ||
Ahmad, D., Afzal, M., & Ishaq, M. (2024). Impacts of riverbank erosion and flooding on communities along the Indus River, Pakistan. Natural Hazards, 120(1), 131-152. Asghari Sarskanroon, S., Zeinali, B., & Poornariman, N. (2015). Pattern Analysis and Erodibility of Germi Chai River Route. Hydrogeomorphology, 2(3), 1-20. Asghari Sereskanrood, S. (2015). Analyzing the effects of gravel and sand mining on the morphology of Grango River (between Sahand Dam to Khorasanak village. Hydrogeomorphology, 1, 21-39 (in Persian). Bhuiyan, F., Hey, R. D., & Wormleaton, P. R. (2010). Bank-attached vanes for bank erosion control and restoration of river meanders. Journal of Hydraulic Engineering, 136(9), 583-596 Boota, M. W., Yan, C., Soomro, S. E. H., Zafar, M. A., Li, Z., Xu, J., & Yousaf, A. (2024). Two-dimensional hydrodynamic modeling for prediction of bank erosion and bed incision in the Indus River. Acta Geophysica, 72(3), 2041-2058. Couper, P. R. (2004). Space and time in river bank erosion research: A review. Area, 36(4), 387-403. Das, T. K., Haldar, S. K., Gupta, I. D., & Sen, S. (2014). River bank erosion induced human displacement and its consequences. Living Reviews in Landscape Research, 8(3), 1-35. Esfandiyari Darabad, F., Bakhshandeh, R., Rahimi, M., Haji, K., & Mostafazadeh, R. (2021). Geomorphological classification and analysis of Hamzekhanloo River using the Rosgen classification model. Hydrogeomorphology, 7(25), 59-39. doi: 10.22034/hyd.2021.39301.1527 Esfandyari-darabad, F., Mostafazadeh, R., Abyat, A., & Naseri, A. (2021). Determination of Meander Pattern in Gharehsou River Using Sinuosity Coefficients and Central Angle in Anzab-Samian Bridge reach. Journal of Applied researches in Geographical sciences, 21(61), 119-131. Esmali, A., Abdollahi, Kh. (2010). Watershed Management and Soil Conservation. University of Mohaghegh Ardabili Press, 574p. Feyznia, S., and Zare Khosheghbal, M. (2004). Sensitivity of rocks and formations to erosion and sediment yield in Latian drainage basin Area. Natural Resources of Iran, 365-381. Ghosh, D., & Saha, S. (2024). Identifying river bank erosion potential zones through geo-spatial and binary logistic regression modeling approach: a case study of river Ganga in Malda district (India). Modeling Earth Systems and Environment, 10(1), 81-98. Hasanuzzaman, M., Bera, B., Islam, A., & Shit, P. K. (2023). Estimation and prediction of riverbank erosion and accretion rate using DSAS, BEHI, and REBVI models: evidence from the lower Ganga River in India. Natural Hazards, 118(2), 1163-1190. Henshaw, A. J., Thorne, C. R., & Clifford, N. J. (2013). Identifying causes and controls of river bank erosion in a British upland catchment. Catena, 100, 107-119. Hosein Zadeh, M. M., Sadogh, S. H., Matesh Beyranvand, S., & Esmaili, R. (2019). Predict the rate of bank erosion in Lavij river during a particular flow by using BSTEM. Geographical Planning of Space, 9(33), 265-278. Huang, P. C. (2024). Estimation of riverbank erosion by combining channel morphological models with AI techniques. Geomatics, Natural Hazards and Risk, 15(1), 2359983. Hughes, A. O., & Prosser, I. P. (2003). Gully and riverbank erosion mapping for the Murray-Darling Basin (p. 97). Canberra: CSIRO Land and Water. Julian, J. P., & Torres, R. (2006). Hydraulic erosion of cohesive riverbanks. Geomorphology, 76(1-2), 193-206. Kim, T. T., Ngoc, P., Nga, T. N. Q., Nguyet, N. T. T., Truong, H. N., Diem, P. T. M., ... & Bay, N. T. (2023). Modifying BEHI (Bank Erosion Hazard Index) to map and assess the levels of potential riverbank erosion of highly human impacted rivers: a case study for Vietnamese Mekong River system. Environmental Earth Sciences, 82(23), 554. Koutalakis, P., Gkiatas, G., Xinogalos, M., Iakovoglou, V., Kasapidis, I., Pagonis, G., ... & Zaimes, G. N. (2024). Estimating Stream Bank and Bed Erosion and Deposition with Innovative and Traditional Methods. Land, 13(2), 232. Kummu, M., Lu, X., Rasphone, A., Sarkkula, J., & Koponen, J. (2008). Riverbank changes along the Mekong River: Remote sensing detection in the Vientiane–Nong Khai area. Quaternary International, 186(1), 100-112. Lefrançois, J., Grimaldi, C., Gascuel‐Odoux, C., & Gilliet, N. (2007). Suspended sediment and discharge relationships to identify bank degradation as a main sediment source on small agricultural catchments. Hydrological Processes: An International Journal, 21(21), 2923-2933. Mahmoodzada, A. B., Varade, D., Shimada, S., Okazawa, H., Aryan, S., Gulab, G., ... & Elansary, H. O. (2023). Quantification of Amu River Riverbank Erosion in Balkh Province of Afghanistan during 2004–2020. Land, 12(10), 1890. Mallick, R. H., Bandyopadhyay, J., & Halder, B. (2023). Impact assessment of river bank erosion in the lower part of Mahanadi River using geospatial sciences. Sustainable Horizons, 8, 100075. Mostafazadeh, R., Esfandiary, F., Hamzeei, M., & Alaei, N. (2024). Temporal variations landscape metrics of vegetation riparian areas in Gharesou River, Ardabil Province. Journal of Applied researches in Geographical Sciences, 24(72), 65-79. Mostafazadeh, R., Esfandyari Darabad, F., Naseri, A., Abyat, A., & Adhami, M. (2023). Determining the fractal pattern in a reach of Qharesou river, Ardabil province, Northwest of Iran. Hydrogeomorphology, 10(37), 97-81. doi: 10.22034/hyd.2023.57428.1700 Mozaffari, H., Asghari Saraskanrood, S., & Esfandiyari Darabad, F. (2022). Modeling erosion and sedimentation changes of Sojasrood River before and after construction of Glaber Dam by GCD method. Quantitative Geomorphological Research, 11(3), 57-87. Nath, B., Naznin, S. N., & Alak, P. (2013). Trends analysis of river bank erosion at Chandpur, Bangladesh: a remote sensing and GIS approach. International Journal of Geomatics and Geosciences, 3(3), 454-463. Parchami, N., Mostafazadeh, R., Esmali Ouri, A., & Imani, R. (2023). Spatial variations of hydrological drought in different time scales in rivers of Ardabil province. Hydrogeomorphology, 9(33), 36-21. doi: 10.22034/hyd.2022.51550.1637 Rezaei Moghadam, M., Mohammadfar, A., & Valizadeh Kamran, K. (2013). Changes Detection and identification of erosion risk areas of Aji Chay River between Khaje to Vanyar. Geography and Environmental Planning, 23(4), 1-14. Rowland, J. C., Schwenk, J. P., Shelef, E., Muss, J., Ahrens, D., Stauffer, S., ... & Vulis, L. (2023). Scale‐dependent influence of permafrost on riverbank erosion rates. Journal of Geophysical Research: Earth Surface, 128(7), e2023JF007101. Saadon, A., Abdullah, J., Muhammad, N. S., Ariffin, J., & Julien, P. Y. (2021). Predictive models for the estimation of riverbank erosion rates. Catena, 196, 104917. Sharafi, S., Kamangir, H., King, S. A., & Safaierad, R. (2021). Effects of extreme floods on fluvial changes: the Khorramabad River as case study (western Iran). Arabian Journal of Geosciences, 14(12), 1140. Sharma, N., Amoako Johnson, F., W Hutton, C., & Clark, M. (2010). Hazard, vulnerability and risk on the Brahmaputra basin: a case study of river bank erosion. The Open Hydrology Journal, 4(1): 211-226. Spiekermann, R., Betts, H., Dymond, J., & Basher, L. (2017). Volumetric measurement of river bank erosion from sequential historical aerial photography. Geomorphology, 296, 193-208. Wang, Z., Tian, S., Yi, Y., & Yu, G. (2007). Principles of river training and management. International Journal of sediment research, 22(4), 247. Yamani, M., & Sharafi, S. (2012). Geomorphology and effective factors on lateral erosion in Hor Rood River, Lorestan province. Geography and Environmental Planning, 23(1), 15-32. | ||
آمار تعداد مشاهده مقاله: 129 تعداد دریافت فایل اصل مقاله: 75 |