تعداد نشریات | 44 |
تعداد شمارهها | 1,303 |
تعداد مقالات | 16,035 |
تعداد مشاهده مقاله | 52,537,776 |
تعداد دریافت فایل اصل مقاله | 15,241,832 |
Numerical study of the non-linear time fractional Klein-Gordon equation using the Pseudo-spectral Method | ||
Computational Methods for Differential Equations | ||
مقالات آماده انتشار، پذیرفته شده، انتشار آنلاین از تاریخ 18 تیر 1403 اصل مقاله (597.61 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22034/cmde.2024.58979.2500 | ||
نویسندگان | ||
Soheila Mirzaei؛ Ali Shokri* | ||
Department of Mathematics, Faculty of Sciences, University of Zanjan, Zanjan, Iran. | ||
چکیده | ||
This paper presents a numerical scheme for solving the non-linear time fractional Klein-Gordon equation. To approximate spatial derivatives, we employ the pseudo-spectral method based on Lagrange polynomials at Chebyshev points, while using the finite difference method for time discretization. Our analysis demonstrates that this scheme is unconditionally stable, with a time convergence order of $\mathcal{O}({3-\alpha})$. Additionally, we provide numerical results in one, two, and three dimensions, highlighting the high accuracy of our approach. The significance of our proposed method lies in its ability to efficiently and accurately address the non-linear time fractional Klein-Gordon equation. Furthermore, our numerical outcomes validate the effectiveness of this scheme across different dimensions. | ||
کلیدواژهها | ||
Fractional derivatives؛ Non-linear Klein-Gordon equation؛ Pseudo-spectral method؛ Lagrange polynomials؛ Finite difference scheme | ||
آمار تعداد مشاهده مقاله: 70 تعداد دریافت فایل اصل مقاله: 166 |