- [1] D. Baleanu, J. A. T. Machado, and A. C. J. Luo, Fractional dynamics and control, Springer Science & Business Media, 2011.
- [2] A. Barone, F. Esposito, C. J. Magee, and A. C. Scott, Theory and applications of the sine-Gordon equation, La Rivista del Nuovo Cimento (1971-1977), 1(2) (1971), 227–267.
- [3] B. Batiha, M. S. M. Noorani, and I. Hashim, Numerical solution of sine-Gordon equation by variational iteration method, Phys. Lett. A, 370(5-6) (2007), 437–440.
- [4] J. P. Boyd, Chebyshev and Fourier spectral methods, Dover Publications, 2001.
- [5] C. Canuto and A. Quarteroni, Spectral methods, Wiley Online Library, 2006.
- [6] H. Chen, S. Lu¨, W. Chen, and others, A fully discrete spectral method for the nonlinear time fractional KleinGordon equation, Taiwanese J. Math., 21(1) (2017), 231–251.
- [7] K. Devendra, J. Singh, and D. Baleanu, A hybrid computational approach for Klein-Gordon equations on Cantor sets, Nonlinear Dyn., 87(1) (2017), 511–517.
- [8] K. Diethelm, The analysis of fractional differential equations: An application-oriented exposition using differential operators of Caputo type, Springer, 2010.
- [9] R. A. El-Nabulsi, Generalized Klein-Gordon and Dirac equations from nonlocal kinetic approach, Zeitschrift fu¨r Naturforschung A, 71(9) (2016), 817–821.
- [10] S. M. El-Sayed, The decomposition method for studying the Klein–Gordon equation, Chaos Solitons Fractals, 18(5) (2003), 1025–1030.
- [11] S. Esmaeili, Solving 2D time-fractional diffusion equations by a pseudospectral method and Mittag-Leffler function evaluation, Math. Methods Appl. Sci., 40(6) (2017), 1838–1850.
- [12] H. R. Ghazizadeh, M. Maerefat, and A. Azimi, Explicit and implicit finite difference schemes for fractional Cattaneo equation, J. Comput. Phys., 229(19) (2010), 7042–7057.
- [13] A. K. Golmankhaneh, A. K. Golmankhaneh, and D. Baleanu, On nonlinear fractional Klein-Gordon equation, Signal Processing, 91(3) (2011), 446–451.
- [14] H. Gómez, I. Colominas, F. Navarrina, and M. Casteleiro, A mathematical model and a numerical model for hyperbolic mass transport in compressible flows, Heat and Mass Transfer, 45(2) (2008), 219–226.
- [15] R. M. Hafez, Y.H. Youssri, and A.G. Atta, Jacobi rational operational approach for time-fractional sub-diffusion equation on a semi-infinite domain, Contemp. Math., 4(4) (2023), 853–876.
- [16] R. Hilfer, Applications of fractional calculus in physics, World Scientific, 2000.
- [17] R. A. Horn and C. R. Johnson, Matrix analysis, Cambridge university press, 1990.
- [18] K. Hosseini, P. Mayeli, and R. Ansari, Modified Kudryashov method for solving the conformable time-fractional Klein-Gordon equations with quadratic and cubic nonlinearities, Optik (Stuttg.), 130 (2017), 737–742.
- [19] J. Klafter, S. C. Lim, and R. Metzler, Fractional dynamics: recent advances, World Scientific, 2012.
- [20] P. Lyu and S. Vong, A linearized second-order scheme for nonlinear time fractional Klein-Gordon type equations, Numer. Algorithms, 78 (2018), 485–511.
- [21] F. Mainardi, Fractional calculus and waves in linear viscoelasticity: an introduction to mathematical models, World Scientific, 2010.
- [22] A. Mohebbi, M. Abbaszadeh, and M. Dehghan, High-order difference scheme for the solution of linear time fractional klein-gordon equations, Numer. Methods Partial Differential Equations, 30(4) (2014), 1234–1253.
- [23] M. Moustafa, Y.H. Youssri, and A.G. Atta, Explicit Chebyshev-Galerkin scheme for the time-fractional diffusion equation, Internat. J. Modern Phys. C, 35(01) (2024), 2450002.
- [24] A. M. Nagy, Numerical solution of time fractional nonlinear Klein-Gordon equation using Sinc-Chebyshev collocation method, Appl. Math. Comput., 310 (2017), 139–148.
- [25] B. Nemati Saray, M. Lakestani, and C. Cattani, Evaluation of mixed Crank-Nicolson scheme and Tau method for the solution of Klein-Gordon equation, Appl. Math. Comput., 331 (2018), 169–181.
- [26] A. Ozkan and E. M. Ozkan, Exact solutions of the space time-fractional Klein-Gordon equation with cubic nonlinearities using some methods, Computational Methods for Differential Equations, 10(3) (2022), 674–685.
- [27] I. Podlubny, Fractional differential equations: an introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications, Academic press, Vol. 198, 1998.
- [28] Z. Z. Sun and X. Wu, A fully discrete difference scheme for a diffusion-wave system, Appl. Numer. Math., 56(2) (2006), 193–209.
- [29] S. Taherkhani, I. Najafi Khalilsaraye, and B. Ghayebi, A pseudospectral Sinc method for numerical investigation of the nonlinear time-fractional Klein-Gordon and sine-Gordon equations, Computational Methods for Differential Equations, 11(2) (2023), 357–368.
- [30] L. N. Trefethen, Spectral methods in MATLAB, SIAM, 2000.
- [31] D. L. Turcotte, Fractals and chaos in geology and geophysics, Cambridge university press, 1997.
- [32] F. J. Valdes-Parada, J. A. Ochoa-Tapia, and J. Alvarez-Ramirez, Effective medium equation for fractional Cattaneo’s diffusion and heterogeneous reaction in disordered porous media, Phys. A, 369(2) (2006), 318–328.
- [33] S. Vong and Z. Wang, A compact difference scheme for a two dimensional fractional Klein-Gordon equation with Neumann boundary conditions, J. Comput. Phys., 274 (2014), 268–282.
- [34] S. Vong and Z. Wang, A high-order compact scheme for the nonlinear fractional Klein–Gordon equation, Numer. Methods Partial Differential Equations, 31(3) (2015), 706–722.
- [35] A. M. Wazwaz, The tanh method: exact solutions of the sine-Gordon and the sinh-Gordon equations, Appl. Math. Comput., 167(2) (2005), 1196–1210.
- [36] B. D. Welfert, Generation of pseudospectral differentiation matrices I, SIAM J. Numer. Anal., 34(4) (1997), 1640–1657.
- [37] F. Yin, J. Song, and F. Lu, A coupled method of Laplace transform and Legendre wavelets for nonlinear KleinGordon equations, Math. Methods Appl. Sci., 37(6) (2014), 781–792.
- [38] Y. H. Youssri, Two Fibonacci operational matrix pseudo-spectral schemes for nonlinear fractional Klein-Gordon equation, Internat. J. Modern Phys. C, 33(04) (2022), 2250049.
- [39] Y. H. Youssri and A.G. Atta, Modal spectral Tchebyshev Petrov-Galerkin stratagem for the time-fractional nonlinear Burgers’ equation, Iran. j. numer. anal. optim., 14(1) (2024), 172–199.
- [40] Y. H. Youssri, M. I. Ismail, and A.G. Atta, Chebyshev Petrov-Galerkin procedure for the time-fractional heat equation with nonlocal conditions, Phys. Scr., 99(1) (2024), 015251.
- [41] E. Yusufoğlu, The variational iteration method for studying the Klein-Gordon equation, Appl. Math. Lett., 21(7) (2008), 669–674.
|