
تعداد نشریات | 45 |
تعداد شمارهها | 1,383 |
تعداد مقالات | 16,920 |
تعداد مشاهده مقاله | 54,533,077 |
تعداد دریافت فایل اصل مقاله | 17,181,571 |
مدل سازی تحلیلی ترانزیستورهای موبیلیتی بالای AlGaN/GaN با لایه p در سد | ||
مجله مهندسی برق دانشگاه تبریز | ||
دوره 55، شماره 1 - شماره پیاپی 111، خرداد 1404، صفحه 123-131 اصل مقاله (828.71 K) | ||
نوع مقاله: علمی-پژوهشی | ||
شناسه دیجیتال (DOI): 10.22034/tjee.2024.59687.4782 | ||
نویسندگان | ||
Robab Madadi؛ Seyed Ebrahim Hosseini* | ||
دانشگاه فردوسی مشهد | ||
چکیده | ||
در این مقاله مدل سازی تحلیلی دوبعدی یک ترانزیستور موبیلیتی بالا با یک لایه p در لایه سد ارائه شده است. در این مدل توزیع پتانسیل و میدان الکتریکی با حل معادله لاپلاس دوبعدی و به روش پتانسیل معادل و شرایط مرزی مناسب برای دو حالت تخلیه کامل و تخلیه ناکامل به دست آمده است. در روش پتانسیل معادل، بارهای ناحیه تخلیه با یک پتانسیل در سطح لایه passivation جایگزین می شود. این مدل دقت و سادگی مناسبی را سبب می شود و دیدگاه فیزیکی در مورد مشخصه شکست ترانزیستور موبیلیتی بالای AlGaN/GaN با لایه p در سد ارائه می کند. این لایه، میدان الکتریکی زیر گیت در نزدیکی درین را کاهش داده و یک بیشینه میدان جدید ایجاد می کند که سبب می شود توزیع میدان در کانال یکنواخت تر شده و در نتیجه ولتاژ شکست افزایش یابد. وابستگی میدان و پتانسیل در کانال به طول و ضخامت لایه p بررسی شده است. مقایسه نتایج مدل با نتایج شبیه سازی با نرم افزار سیلواکو، دقت مدل را تایید می کند. | ||
کلیدواژهها | ||
مدل تحلیلی؛ معادله لاپلاس؛ روش پتانسیل معادل؛ پتانسیل؛ میدان الکتریکی؛ لایه p | ||
مراجع | ||
[1] M.T.B. Kashem, S. Subrina, “Analytical modeling of channel potential and threshold voltage of triple material gate AlGaN/GaN HEMT including trapped and polarization‐induced charges”. International Journal of Numerical Modelling: Electronic Networks, Devices and Fields, vol. 32, no. 1, pp. e2476-e2490, 2019.
[2] S. Zhu, H. Jia, T. Li, Y. Tong, Y. Liang, X. Wang, T. Zeng, Y. Yang, “Novel high-energy-efficiency AlGaN/GaN HEMT with high gate and multi-recessed buffer”. Micromachines, vol. 10, no. 7, pp. 444-456, 2019.
[3] L. Yang, B. Duan, Z. Dong, Y. Wang, Y. Yang, “The analysis model of AlGaN/GaN HEMTs with electric field modulation effect”, IETE Technical Review, vol. 37, no. 6, pp. 553-564, 2020.
[4] F. Bernardini, V. Fiorentini, D. Vanderbilt, “Spontaneous polarization and piezoelectric constants of III-V nitrides”, Physical Review B, vol. 56, no.16, pp. R10024- R10027, 1997.
[5] E.S.Hellman, “The polarity of GaN: a critical review”, Materials Research Society Internet Journal of Nitride Semiconductor Research, vol. 3, pp. e11-e22, 1998.
[6] O. Ambacher, J. Smart, J.R. Shealy, N.G. Weimann, K. Chu, M. Murphy, W.J. Schaff, L.F. Eastman, “Two-dimensional electron gases induced by spontaneous and piezoelectric polarization charges in N-and Ga-face AlGaN/GaN heterostructures”. Journal of applied physics, vol. 85, no.6, pp. 3222-3233, 1999.
[7] O. Ambacher, B. Foutz, J. Smart, J.R. Shealy, N.G. Weimann, K. Chu, M. Murphy, A.J. Sierakowski, W.J. Schaff, and L.F. Eastman, “Two-dimensional electron gases induced by spontaneous and piezoelectric polarization in undoped and doped AlGaN/GaN heterostructures”, Journal of applied physics, vol. 87, no.1, pp. 334-344, 2000.
[8] J.P. Ibbetson, P.T. Fini, K.D. Ness, S.P. DenBaars, J.S. Speck, and U.K. Mishra, “Polarization effects, surface states, and the source of electrons in AlGaN/GaN heterostructure field effect transistors”, Applied Physics Letters, vol. 77, no.2, pp. 250-252, 2000.
[9] O. Ambacher, J. Majewski, C. Miskys, A. Link, M. Hermann, M. Eickhoff, M. Stutzmann, F. Bernardini, V. Fiorentini, V. Tilak, B. Schaff, L.F. Eastman, “Pyroelectric properties of Al (In) GaN/GaN hetero-and quantum well structures”, Journal of physics: condensed matter, vol. 14, no.13, pp. 3399-3434, 2002.
[10] S. Heikman, S. Keller, Y. Wu, J.S. Speck, S.P. DenBaars, U.K. Mishra, “Polarization effects in AlGaN/GaN and GaN/AlGaN/GaN heterostructures”, Journal of applied physics, vol. 93, no.12, pp. 10114-10118, 2003.
[11] S. Karmalkar, U.K. Mishra, “Enhancement of breakdown voltage in AlGaN/GaN high electron mobility transistors using a field plate”, IEEE transactions on electron devices, vol. 48, no.8, pp. 1515-1521, 2001.
[12] S. Karmalkar, M.S. Shur, G. Simin, M.A. Khan, “Field-plate engineering for HFETs”, IEEE Transactions on electron devices, vol. 52, no.12, pp. 2534-2540, 2005.
[13] Y. Dora, A. Chakraborty, L. McCarthy, S. Keller, S.P. DenBaars, U.K. Mishra, “High breakdown voltage achieved on AlGaN/GaN HEMTs with integrated slant field plates”, IEEE Electron Device Letters, vol. 27, no.9, pp. 713-715, 2006.
[14] Y.-F. Wu, M. Moore, A. Saxler, T. Wisleder, P. Parikh, “40-W/mm double field-plated GaN HEMTs”, In 2006 64th device research conference, IEEE, June 2006, State College, PA, USA, pp. 151-152.
[15] Y. Pei, Z. Chen, D. Brown, S. Keller, S. P. Denbaars, U. K. Mishra, “Deep-submicrometer AlGaN/GaN HEMTs with slant field plates”, IEEE electron device letters, vol. 30, no.4, pp. 328-330, 2009.
[16] E.B. Treidel, O. Hilt, F. Brunner, V. Sidorov, J. Würfl, G. Tränkle, “AlGaN/GaN/AlGaN DH-HEMTs breakdown voltage enhancement using multiple grating field plates (MGFPs)”, IEEE Transactions on Electron Devices, vol. 57, no.6, pp. 1208-1216, 2010.
[17] K.-H. Cho, Y.-S. Kim, J. Lim, Y.-H. Choi, M.-K. Han, “Design of AlGaN/GaN HEMTs employing mesa field plate for breakdown voltage enhancement”, Solid-state electronics, vol. 54, no.4, pp. 405-409, 2010.
[18] T. Asano, N. Yamada, T. Saito, H. Tokuda, M. Kuzuhara, “Breakdown characteristics in AlGaN/GaN HEMTs with multi-field-plate structure” in 2012 IEEE International Meeting for Future of Electron Devices Kansai, IEEE, May 2012, Suita, Japan.
[19] T. Deguchi, A. Kamada, M. Yamashita, H. Tomita, M. Arai, K. Yamasaki, T. Egawa, “High-voltage AlGaN/GaN HFETs by using graded gate field plates”, Electronics letters, vol. 48, no.2, pp. 109-110, 2012.
[20] G. Xie, E. Xu, J. Lee, N. Hashemi, B. Zhang, F.Y. Fu, W.T. Ng, “Breakdown-voltage-enhancement technique for RF-based AlGaN/GaN HEMTs with a source-connected air-bridge field plate”, IEEE electron device letters, vol. 33, no.5, pp. 670-672, 2012.
[21] K. Jena, R. Swain, T.R. Lenka, “Impact of a drain field plate on the breakdown characteristics of AlInN/GaN MOSHEMT”, Journal of the Korean Physical Society, vol. 67, no.9, pp. 1592-1596, 2015.
[22] A. Soni, Ajay, M. Shrivastava “Novel drain-connected field plate GaN HEMT designs for improved V BD–R ON tradeoff and RF PA performance”, IEEE Transactions on Electron Devices, vol. 67, no.4, pp. 1718-1725, 2020.
[23] K.-H. Cho, Y.-H. Choi, J. Lim, M.-K. Han, “Increase of breakdown voltage on AlGaN/GaN HEMTs by employing proton implantation”, IEEE transactions on electron devices, vol. 56, no.3, pp. 365-369, 2009.
[24] B. Duan, Y.T. Yang, “Breakdown voltage analysis for the new RESURF AlGaN/GaN HEMTs”, Science China Information Sciences, vol. 55, no.2, pp. 473-479, 2012.
[25] B. Duan, Y. Yang, “New Al0.25Ga0.75N/GaN HEMTs structure with the partial silicon doping”, Micro & Nano Letters, vol. 7, no.1, pp. 9-11, 2012.
[26] H. Guo, B. Duan, S. Xie, S. Yuan, Y. Yang, “Enhancement‐mode AlGaN/GaN HEMTs with optimized electric field using a partial GaN cap layer”, Micro & Nano Letters, vol. 12, no.10, pp. 763-766, 2017.
[27] R. Hao, W. Li, K. Fu, G. Yu, L. Song, J. Yuan, J. Li, X. Deng, X. Zhang, Q. Zhou, Y. Fan, W. Shi, Y. Cai, X. Zhang, B. Zhang, “Breakdown enhancement and current collapse suppression by high-resistivity GaN cap layer in normally-off AlGaN/GaN HEMTs”, IEEE Electron Device Letters, vol. 38, no.11, pp. 1567-1570, 2017.
[28] B. Duan, S. Xie, H. Guo, Y. Yang, “Etched Al0.32Ga0.68N/GaN HEMTs with high output current and breakdown voltage (> 600 V)”, Micro & Nano Letters, vol. 13, no.5, pp. 676-679, 2018.
[29] T. Kabemura, S. Ueda, Y. Kawada, K. Horio, “Enhancement of Breakdown Voltage in AlGaN/GaN HEMTs: Field Plate Plus High-k Passivation Layer and High Acceptor Density in Buffer Layer”, IEEE Transactions on Electron Devices, vol. 65, no.9, pp. 3848-3854, 2018.
[30] G. Zhou, Z. Wan, G. Yang, Y. Jiang, R. Sokolovskij, H. Yu, G. Xia, “Gate leakage suppression and breakdown voltage enhancement in p-GaN HEMTs using metal/graphene gates”, IEEE Transactions on Electron Devices, vol. 67, no.3, pp. 875-880, 2020.
[31] S. Yuan, B. Duan, X. Yuan, Z. Cao, H. Guo, Y. Yang, “New Al0.25Ga0.75N/GaN high electron mobility transistor with partial etched AlGaN layer”, Superlattices and Microstructures, vol. 93, pp. 303-307, 2016.
[32] Y. Liu, Q. Yu, J. Du, “Simulation design of a high-breakdown-voltage p-GaN-gate GaN HEMT with a hybrid AlGaN buffer layer for power electronics applications”, Journal of Computational Electronics, vol. 19, pp. 1527-1537, 2020.
[33] P. Srivastava, J. Das, D. Visalli, J. Derluyn, M.V. Hove, P.E. Malinowski, D. Marcon, K. Geens, K. Cheng, S. Degroote, M. Leys, M. Germain, S. Decoutere, R.P. Mertens, G. Borghs, “Silicon substrate removal of GaN DHFETs for enhanced (< 1100 V) breakdown voltage”, IEEE Electron Device Letters, vol. 31, no.8, pp. 851-853, 2010.
[34] J. Liu, Y.-F. Guo, J. Zhang, J. Yao, M. Zhang, C. Huang, L. Du, “Analytical Study on the Breakdown Characteristics of Si-Substrated AlGaN/GaN HEMTs With Field Plates”, IEEE Journal of the Electron Devices Society, 8: pp. 1031-1038, 2020.
[35] H. Wu, B.-X. Duan, L.-Y. Yang, Y.-T. Yang, “Theoretical analytic model for RESURF AlGaN/GaN HEMTs”, Chinese Physics B, vol. 28, no.2, pp. 027302, 2019.
[36] M. Kaddeche, A. Telia, A. Soltani, “Analytical modeling and analysis of AlmGa1-mN/GaN HEMTs employing both field-plate and high-k dielectric stack for high-voltage operation”, Journal of Computational Electronics, vol.12, no.3, pp. 501-510, 2013.
[37] M. Wei, S.W.-Bo, Y. Cui, Z. Chao, Z.J.-Cheng, M.X.- Hua, Z.J.- Feng, L.H.- Xia, Y.L.- An, Z. Kai, Z. S.- Lei, C.Y.- He, Z.X.- Feng, H. Yue, “A two-dimensional fully analytical model with polarization effect for off-state channel potential and electric field distributions of GaN-based field-plated high electron mobility transistor”, Chinese Physics B, vol.23, no.8, pp. 087305-8, 2014.
[38] T. Chen, Q. Zhou, D. Wei, C. Dong, W. Chen, B. Zhang, “Physics-based 2-D analytical model for field-plate engineering of AlGaN/GaN power HFET”. IEEE Transactions on Electron Devices, vol.66, no.1, pp. 116-125, 2018.
[39] J. Liu, Y. Guo, J. Zhang, J. Yao, X. Huang, C. Huang, Z. Huang, K. Yang, “Analytical model for the potential and electric field distributions of AlGaN/GaN HEMTs with gate-connected FP based on equivalent potential method”, Superlattices and Microstructures, vol.138, pp. 106327-106342, 2020.
[40] L. Yang, B. Duan, Y. Wang, Y. Yang, “Analytical models for the electric field and potential of AlGaN/GaN HEMT with partial silicon doping”, Superlattices and Microstructures, vol.128, pp. 349-357, 2019.
[41] G. Haijun, D. Baoxing, W. Hao, Y. Yintang, “Analytical model of AlGaN/GaN HEMTs with a partial GaN cap layer”, Superlattices and Microstructures, vol.123, pp. 210-217, 2018.
[42] S.M. Razavi, S.H. Zahiri, S.E. Hosseini, “A novel AlGaN/GaN HEMT with a p-layer in the barrier”, Physica E: Low-dimensional Systems and Nanostructures, vol.54, pp. 24-29, 2013.
[43] S.P. Kumar, A. Agrawal, R. Chaujar, M. Gupta, R.S. Gupta, “Analytical modeling and simulation of subthreshold behavior in nanoscale dual material gate AlGaN/GaN HEMT”, Superlattices and Microstructures, vol.44, no.1, pp. 37-53, 2008.
[44] فرهاد عباس نژاد، مجید طیرانی، ادیب ابریشمی فر و احسان جوهری سلماسی "بهبود مشخصه های خطینگی تقویت کننده های توان GaN بر مبنای تزریق سیگنال هارمونیک دوم" مجله مهندسی برق دانشگاه تبریز، جلد 51، شماره 4، صفحات 412-404، 1400. [45] سارا سجادی، محمد سروش، کریم انصاری اصل، " پیشنهاد یک طرح جدید به منظور افزایش بازده دیود گسیل نور گالیم نیتراید مبتنی بر بلور فوتونی" مجله مهندسی برق دانشگاه تبریز، جلد 48، شماره 3، 1397. [46] H.X. Guang, Z.D. Gang, J.D. Sheng, “Formation of two-dimensional electron gas at AlGaN/GaN heterostructure and the derivation of its sheet density expression”, Chin. Phys. B, vol.24, no.6, pp. 067301-5, 2015.
| ||
آمار تعداد مشاهده مقاله: 250 تعداد دریافت فایل اصل مقاله: 59 |