تعداد نشریات | 44 |
تعداد شمارهها | 1,303 |
تعداد مقالات | 16,020 |
تعداد مشاهده مقاله | 52,489,251 |
تعداد دریافت فایل اصل مقاله | 15,216,897 |
آنالیز حساسیت پارامترهای موثر بر عملکرد چرخه رانکین آلی با منبع انرژی خورشیدی و زمین گرمایی به روش تاگوچی | ||
مهندسی مکانیک دانشگاه تبریز | ||
مقاله 4، دوره 54، شماره 2 - شماره پیاپی 107، مرداد 1403، صفحه 31-40 اصل مقاله (548.28 K) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22034/jmeut.2024.60069.3367 | ||
نویسندگان | ||
محسن نادری1؛ محمد وجدی* 2؛ فرهاد صادق مغانلو2 | ||
1دانش آموخته کارشناسی ارشد، گروه مهندسی مکانیک، دانشگاه محقق اردبیلی، اردبیل، ایران | ||
2دانشیار، گروه مهندسی مکانیک، دانشگاه محقق اردبیلی، اردبیل، ایران | ||
چکیده | ||
افزایش جمعیت جهانی و کاهش ذخایر سوختهای فسیلی، همراه با تغییرات محیطی ناشی از افزایش تقاضا برای انرژی تجدیدپذیر، موجب شدهاند که تأمین پایدار، کافی و مقرون به صرفه این منابع به یکی از چالشهای مهم موجود تبدیل شوند. مطالعه حاضر به بررسی چرخه تولید توان بر پایه انرژی زمین گرمایی و خورشیدی با هدف بهینهسازی عملیاتی، افزایش کارایی و کاهش هزینههای تولید انرژی میپردازد. این مطالعه از نرمافزار EES برای تحلیل اگزرژی و اگزرژی- اقتصادی استفاده کرده و با استفاده از روش بهینهسازی تاگوچی به شناسایی حالتهای بهینه عملیاتی پرداخته است. نتایج نشان میدهند که این سیستم تحت شرایط بهینه، میتواند بازده قانون اول را تا ۱۷% نسبت به مقدار میانگین افزایش و تخریب اگزرژی کل را تا 50% نسبت به میانگین کاهش دهد. همچنین نتایج نشان میدهد که تبخیرکن متصل به گردآور خورشیدی و دمای چگالنده، اصلیترین عوامل تأثیرگذار بر بازده قوانین اول و دوم، کاهش تخریب اگزرژی و نرخ هزینه تخریب اگزرژی هستند. | ||
کلیدواژهها | ||
تحلیل انرژی؛ تحلیل اگزرژی؛ چرخه رانکین آلی؛ روش تاگوچی؛ بهینهسازی؛ طراحی آزمایش | ||
مراجع | ||
[1] Li K, Bian H, Liu C, Zhang D, Yang Y. Comparison of geothermal with solar and wind power generation systems. Renewable and Sustainable Energy Reviews. 2015;42:1464-74. [2] خداپرست ش, زارع و, محمدخانی ف. تحلیل ترمودینامیکی و اقتصادی یک پیکربندی نوین مایعسازی هیدروژن بر مبنای انرژی زمین گرمایی دما پایین. مهندسی مکانیک دانشگاه تبریز. 1402;53(1):111-20. [3] Rahbar K, Mahmoud S, Al-Dadah RK, Moazami N, Mirhadizadeh SA. Review of organic Rankine cycle for small-scale applications. Energy conversion and management. 2017;134:135-55. [4] Stram BN. Key challenges to expanding renewable energy. Energy Policy. 2016;96:728-34. [5] Li K, Liu C, Jiang S, Chen Y. Review on hybrid geothermal and solar power systems. Journal of cleaner production. 2020;250:119481. [6] Cakici DM, Erdogan A, Colpan CO. Thermodynamic performance assessment of an integrated geothermal powered supercritical regenerative organic Rankine cycle and parabolic trough solar collectors. Energy. 2017;120:306-19. [7] Zhou C, Doroodchi E, Moghtaderi B. An in-depth assessment of hybrid solar–geothermal power generation. Energy conversion and management. 2013;74:88-101. [8] Astolfi M, Xodo L, Romano MC, Macchi E. Technical and economical analysis of a solar–geothermal hybrid plant based on an Organic Rankine Cycle. Geothermics. 2011;40(1):58-68. [9] Ghasemi H, Sheu E, Tizzanini A, Paci M, Mitsos A. Hybrid solar–geothermal power generation: Optimal retrofitting. Applied energy. 2014;131:158-70. [10] عبدالعلی پور م. تحلیل ترمودینامیکی یک سیستم تولید همزمان بر اساس یک چرخه برایتون فوقبحرانی دی-اکسیدکربن. مهندسی مکانیک دانشگاه تبریز. 1402;53(3):25-34. [11] Mohammadkhani F, Shokati N, Mahmoudi S, Yari M, Rosen M. Exergoeconomic assessment and parametric study of a Gas Turbine-Modular Helium Reactor combined with two Organic Rankine Cycles. Energy. 2014;65:533-43. [12] El-Emam RS, Dincer I. Exergy and exergoeconomic analyses and optimization of geothermal organic Rankine cycle. Applied thermal engineering. 2013;59(1-2):435-44. [13] Calise F, d’Accadia MD, Macaluso A, Piacentino A, Vanoli L. Exergetic and exergoeconomic analysis of a novel hybrid solar–geothermal polygeneration system producing energy and water. Energy Conversion and Management. 2016;115:200-20. [14] Ustaoglu A, Kursuncu B, Metin Kaya A, Caliskan H. Analysis of vapor compression refrigeration cycle using advanced exergetic approach with Taguchi and ANOVA optimization and refrigerant selection with enviroeconomic concerns by TOPSIS analysis. Sustainable Energy Technologies and Assessments. 2022;52:102182. [15] Karna SK, Sahai R. An overview on Taguchi method. International journal of engineering and mathematical sciences. 2012;1(1):1-7. [16] Tsui K-L. An overview of Taguchi method and newly developed statistical methods for robust design. Iie Transactions. 1992;24(5):44-57. [17] Asl MS, Kakroudi MG, Golestani-Fard F, Nasiri H. A Taguchi approach to the influence of hot pressing parameters and SiC content on the sinterability of ZrB2-based composites. International Journal of Refractory Metals and Hard Materials. 2015;51:81-90. [18] Megdouli K, Gholizadeh T, Tashtoush B, Cinnella P, Skorek-Osikowska A. Optimization of carbon dioxide ejector expansion transcritical refrigeration system with ANOVA and NSGA-II. International Journal of Refrigeration. 2024;158:173-89. [19] Naderi M, Vajdi M, Sadegh Moghanlou F, Nami H. Sensitivity analysis of fluid flow parameters on the performance of fully dense ZrB2-made micro heat exchangers. Synthesis and Sintering. 2023;3(2):88-106. [20] Oza VH, Bhatt NM. Optimization of ammonia-water absorption refrigeration system using Taguchi method of design of experiment. International Journal of Mechanics and Solids. 2018;13(2):111-26. [21] Ustaoglu A, Kursuncu B, Alptekin M, Gok MS. Performance optimization and parametric evaluation of the cascade vapor compression refrigeration cycle using Taguchi and ANOVA methods. Applied Thermal Engineering. 2020;180:115816. [22] Bademlioglu AH, Canbolat AS, Kaynakli O. Multi-objective optimization of parameters affecting Organic Rankine Cycle performance characteristics with Taguchi-Grey Relational Analysis. Renewable and Sustainable Energy Reviews. 2020;117:109483. [23] Shu G, Zhao M, Tian H, Huo Y, Zhu W. Experimental comparison of R123 and R245fa as working fluids for waste heat recovery from heavy-duty diesel engine. Energy. 2016;115:756-69. [24] Vajdi M, Ghasemzadeh N, Behnoud V, Sadegh Moghanlou F. Energy, exergy, and exergoeconomic analysis of power generation cycle based on independent geothermal and solar energy. Sharif Journal of Mechanical Engineering. 2022;38(2):87-96. [25] Sadeghi M, Chitsaz A, Mahmoudi SMS, Rosen MA. Thermoeconomic optimization using an evolutionary algorithm of a trigeneration system driven by a solid oxide fuel cell. Energy. 2015;89:191-204. [26] Ahmadi P, Dincer I, Rosen MA. Exergy, exergoeconomic and environmental analyses and evolutionary algorithm based multi-objective optimization of combined cycle power plants. Energy. 2011;36(10):5886-98. [27] Huang M-L, Hung Y-H, Yang Z-S. Validation of a method using Taguchi, response surface, neural network, and genetic algorithm. Measurement. 2016;94:284-94. [28] Gul M, Shah AN, Aziz U, Husnain N, Mujtaba MA, Kousar T, et al. Grey-Taguchi and ANN based optimization of a better performing low-emission diesel engine fueled with biodiesel. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects. 2022;44(1):1019-32. [29] Javaherdeh K, Amin Fard M, Zoghi M. Thermo-economic analysis of organic Rankine cycle with cogeneration of heat and power operating with solar and geothermal energy in Ramsar. Modares Mechanical Engineering. 2017;16(13):56-63. [30] Cimbala JM. Taguchi orthogonal arrays. Pennsylvania State University. 2014:1-3. | ||
آمار تعداد مشاهده مقاله: 232 تعداد دریافت فایل اصل مقاله: 106 |