
تعداد نشریات | 45 |
تعداد شمارهها | 1,384 |
تعداد مقالات | 16,918 |
تعداد مشاهده مقاله | 54,496,727 |
تعداد دریافت فایل اصل مقاله | 17,144,635 |
بهبود تشخیص تصاویر اندوسکوپی کپسولی با استفاده از شبکه عصبی YOLO | ||
مجله مهندسی برق دانشگاه تبریز | ||
دوره 55، شماره 1 - شماره پیاپی 111، خرداد 1404، صفحه 83-90 اصل مقاله (589.57 K) | ||
نوع مقاله: علمی-پژوهشی | ||
شناسه دیجیتال (DOI): 10.22034/tjee.2024.58239.4711 | ||
نویسندگان | ||
Shokoufeh Hatami1؛ Sina Behnam2؛ Reza Shamsaee* 3 | ||
1دانشکده مهندسی کامپیوتر دانشگاه سجاد- مشهد-ایران | ||
2دانشکده مهندسی کامپیوتر، دانشگاه سجاد- مشهد- ایران | ||
3عضو هیات علمی / دانشگاه سجاد | ||
چکیده | ||
فناوری اندوسکوپی کپسولی (CE) توسعه سریعی را تجربه می کند. این پیشرفت وابسته به سهولت استفاده، طول عمر بالای باتری، و کیفیت خوب تصاویر است. اگرچه وضوح دنبالههای تصاویر این تکنیک درحال رشد است، شناسایی محتوای مورد علاقه در آن نیازمند صرف زمان و تلاش زیادی است. برای این مورد، روشی جدید در این مقاله ارایه شده است که مبتنی بر معماری شبکه عصبی متداول (YOLO v5) بوده و توسط آن مکان و برچسب تودهها برروی دو پایگاه دادگان قابل دسترس عموم مورد آزمایش قرار گرفته است. شبکه عصبی دیگری به نام (GPD) که براساس معماری (ALexNet) می باشد به عنوان رقیب انتخاب شده است. هدف اصلی از این تحقیق کاهش زمان تشخیص با حفظ دقت موجود توسط (Yolo) بوده است. خوشبختانه نتایج 6% هم، در صحت تشخیص نسبت به رقیب رشد داشته. بعلاوه، (Yolo ) 58% کارایی بهتر در متوسط زمان پیشبینی از خود نمایش میهد و هر فریم در 5.39 میلی ثانیه مورد تحلیل قرارمیگیرد. همچنین، مقیاس پذیری (Yolo) مورد بررسی قرارگرفته است، که نتایج اشاره به تنزل مطبوع کیفیت، به اندازه 6.95 مرتبه برروی دادگان (Kvasir) دارد، که اثبات بر کاربردی بودن (Yolo) در این حوزه است. افزایش کیفیت ورودی منجر به نتایج بهتر در (Yolo) شده است. تمامی پیاده سازیها ومطالب پیرامونی برروی سایت (GitHub) قابل دسترس است. | ||
کلیدواژهها | ||
مطالعه بیماریهای معده و روده؛ اندوسکوپی کپسولی؛ GPD؛ YOLO | ||
مراجع | ||
[1] C. Hamashima, “Update version of the Japanese Guidelines for Gastric Cancer Screening,” Jpn J Clin Oncol., vol. 48, no. 7, pp. 673-683, 2018.
[2] S. Hatami, R. Shamsaee and M. Olyaei, “Detection and classification of gastric precancerous diseases using deep learning,” in IEEE 6th Iranian Conference on Signal Processing and Intelligent Systems (ICSPIS) (pp. 1-5), 2020.
[3] S. Piccirelli, A. Mussetto, A. Bellumat, R. Cannizzaro, M. Pennazio, A. Pezzoli, A. Bizzotto, N. Fusetti, F. Valiante, C. Hassan, S. Pecere, A. Koulaouzidis and C. Spada, “New Generation Express View: An Artificial Intelligence Software Effectively Reduces Capsule Endoscopy Reading Times,” Diagnostics, vol. 12, no. 8, p. 1783, 2022.
[4] M. Alom, T. Taha, C. Yakopcic, S. Westberg, P. Sidike, M. Nasrin, B. Van Esesn, A. Awwal and V. Asari, “The history began from alexnet: A comprehensive survey on deep learning approaches,” arXiv preprint, p. arXiv:1803.01164, 2018.
[5] F. Iandola, S. Han, M. Moskewicz, K. Ashraf, W. Dally and K. Keutzer, “SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and< 0.5 MB model size,” arXiv preprint, p. arXiv:1602.07360, 2016.
[6] S. Targ, D. Almeida and K. Lyman, “Resnet in resnet: Generalizing residual architectures,” arXiv preprint, p. arXiv:1603.08029, 2016.
[7] P. Jiang, D. Ergu, F. Liu, Y. Cai and B. Ma, “A Review of Yolo algorithm developments,” Procedia Computer Science, vol. 199, pp. 1066-1073, 2022.
[8] J. Redmon and A. Farhadi, “YOLO9000: better, faster, stronger,” in IEEE conference on computer vision and pattern recognition (CVPR) (pp. 6517-6525), 2017.
[9] sina-behnam. [Online]. Available: https://github.com/sina-behnam/GPD_Classify.
[10] J. Saurin, M. Lapalus, F. Cholet, P. D'Halluin, B. Filoche, M. Gaudric, S. Sacher-Huvelin, C. Savalle, M. Frederic, P. Lamarre and E. Ben Soussan, “Can we shorten the small-bowel capsule reading time with the "Quick-view" image detection system?,” Dig Liver Dis., vol. 44, no. 6, pp. 477-481, 2012.
[11] S. Beg, E. Wronska, I. Araujo, B. González Suárez, E. Ivanova, E. Fedorov, L. Aabakken, U. Seitz, J. Rey, J. Saurin, R. Tari, T. Card and K. Ragunath, “Use of rapid reading software to reduce capsule endoscopy reading times while maintaining accuracy,” Gastrointest Endosc., vol. 91, no. 6, pp. 1322-1327, 2020.
[12] C. Gomes, R. Pinho, A. Ponte, A. Rodrigues, M. Sousa, J. Silva, E. Afecto and J. Carvalho, “Evaluation of the sensitivity of the Express View function in the Mirocam® capsule endoscopy software,” Scand J Gastroenterol, vol. 55, no. 3, pp. 371-375, 2020.
[13] P. Viola and M. Jones, “Rapid object detection using a boosted cascade of simple features,” in IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR, 2001.
[14] N. Dalal and B. Triggs, “Histograms of oriented gradients for human detection,” in IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05), 2005.
[15] P. Felzenszwalb, R. B. Girshick, D. McAllester and D. Ramanan, “Object Detection with Discriminatively Trained Part-Based Models,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 32, no. 9, pp. 1627-1645, 2010.
[16] R. Girshick, J. Donahue, T. Darrell and J. Malik, “Rich feature hierarchies for accurate object detection and semantic segmentation,” in IEEE conference on computer vision and pattern recognition (pp. 580-587), 2014.
[17] K. He, X. Zhang, S. Ren and J. Sun, “Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition,” arXiv preprint, p. arXiv:1406.4729, 2014.
[18] R. Girshick, “Fast R-CNN,” arXiv preprint, p. arXiv:1504.08083, 2015.
[19] S. Ren, K. He, R. Girshick and J. Sun, “Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks,” arXiv preprint, p. arXiv:1506.01497, 2016.
[20] J. Redmon, S. Divvala, R. Girshick and A. Farhadi, “You Only Look Once: Unified, Real-Time Object Detection,” arXiv preprint, p. arXiv:1506.02640, 2016.
[21] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C. Fu and A. Berg, “Ssd: Single shot multibox detector,” in Springer European conference on computer vision (pp. 21-37), 2016.
[22] T. Lin, P. Dollár, R. Girshick, K. He, B. Hariharan and S. Belongie, “Feature Pyramid Networks for Object Detection,” arXiv preprint, p. arXiv:1612.03144, 2016.
[23] T. Lin, P. Goyal, R. Girshick, K. He and P. Dollár, “Focal loss for dense object detection,” in IEEE international conference on computer vision (pp. 2980-, 2017.
[24] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke and A. Rabinovich, “Going deeper with convolutions,” in IEEE conference on computer vision and pattern recognition (pp. 1-9), 2015.
[25] L. Alzubaidi, J. Zhang, A. Humaidi, A. Al-Dujaili, Y. Duan, O. Al-Shamma, J. Santamaría, M. Fadhel, M. Al-Amidie and L. Farhan, “Review of deep learning: Concepts, CNN architectures, challenges, applications, future directions,” Journal of big Data, vol. 8, no. 1, pp. 1-74, 2021.
[26] X. Zhang, F. Chen, T. Yu, J. An, Z. Huang, J. Liu, W. Hu, L. Wang, H. Duan and J. Si, “Real-time gastric polyp detection using convolutional neural networks,” PloS one, vol. 14, no. 3, p. p.e0214133, 2019.
[27] C. Bailer, T. Habtegebrial and D. Stricker, “Fast feature extraction with CNNs with pooling layers,” arXiv preprint, p. arXiv:1805.03096, 2018.
[28] Q. Zhang and D. Liang, “Visualization of fully connected layer weights in deep learning CT reconstruction,” arXiv preprint, p. arXiv:2002.06788, 2020.
[29] A. Akbari, M. Awais, M. Bashar and J. Kittler, “A Theoretical Insight Into the Effect of Loss Function for Deep Semantic-Preserving Learning,” IEEE Transactions on Neural Networks and Learning Systems, vol. 34, no. 1, pp. 119-133, 2023.
[30] Z. Zou, Z. Shi, Y. Guo and J. Ye, “Object detection in 20 years: A survey,” arXiv preprint, p. arXiv:1905.05055, 2019.
مونا زنده دل, جواد حمید زاده “بهبود تشخیص نفوذ به شبکه اینترنت اشیاء با استفاده از یادگیری عمیق و الگوریتم بهینه سازی میگوی آشوبی,” مجله مهندسی برق دانشگاه تبریز، جلد 53، شماره 2، صفحات 127-138، 1402.
[31]
[32] A. Bochkovskiy, C. Wang and H. Liao, “YOLOv4: Optimal Speed and Accuracy of Object Detection,” arXiv preprint, p. arXiv:2004.10934, 2020.
[33] X. Zhang, W. Hu, F. Chen, J. Liu, Y. Yang, L. Wang, H. Duan and J. Si, “Gastric precancerous diseases classification using CNN with a concise model,” PLoS One, vol. 12, no. 9, p. e0185508, 2017.
[34] M. VASOUJOUYBARI, E. Ataie and M. Bastam, “An MLP-based Deep Learning Approach for Detecting DDoS Attacks,” Tabriz Journal of Electrical Engineering (TJEE), vol. 52, pp. 195-204, 2022.
[35] J. Qi, J. Du, S. Siniscalchi, X. Ma and C. Lee, “On Mean Absolute Error for Deep Neural Network Based,” arXiv, p. arXiv:2008.07281, 2020.
[36] J. Chen, C. Wolfe, Z. Li and A. Kyrillidis, “Demon: Improved Neural Network Training with Momentum Decay,” arXiv, p. arXiv:1910.04952, 2021.
[37] Kvasir. [Online]. Available: https://datasets.simula.no/downloads/kvasir/kvasir-dataset-v2.zip.
[38] Scikit-learn. [Online]. Available: https://scikit-learn.org/stable/. | ||
آمار تعداد مشاهده مقاله: 333 تعداد دریافت فایل اصل مقاله: 44 |