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Abstract
This article introduces a new numerical hybrid approach based on an operational matrix and spectral technique to
solve Caputo fractional sub-diffusion equations. This method transforms the model into a set of nonlinear algebraic

equation systems. Chebyshev polynomials are used as basis functions. The study includes theoretical analysis

to demonstrate the convergence and error bounds of the proposed method. Two test problems are conducted to
illustrate the method’s accuracy. The results indicate the efficiency of the proposed method.
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1. Introduction

In recent decades, there has been a growing recognition of the significant applications of fractional calculus in various
engineering disciplines. This growing recognition and use of fractional calculus principles has promoted the emergence
of fractional partial differential equations (FPDEs) as an important area of research. As the applications of fractional
calculus concepts have widened, the need to solve and comprehend FPDEs has increased in importance. Meanwhile,
fractional sub-diffusion equations (FSDEs) are a powerful tool for modeling anomalous diffusion processes, where
particles spread in a way that deviates from the classical Fickian diffusion model. These equations find applications in
various scientific fields, including physics (describing charge transport in disordered materials), finance (modeling stock
price fluctuations), and engineering (characterizing pollutant transport in porous media) [15]. Obtaining analytical
solutions for most FSDEs is quite challenging. As a result, significant efforts have focused on developing numerical
methods to solve these equations. In this study, we focus on FSDEs as follows:

∂ηf(x, t)

∂tη
= B

∂2f(x, t)

∂x2
+Q(x, t), B > 0, η ∈ (0, 1), x ∈ (0, l), t ∈ (0, τ ], (1.1)

with initial

f(x, 0) = f1(x), x ∈ [0, l], (1.2)

and boundary condition

f(0, t) = f2(t), t ∈ (0, τ ],
f(l, t) = f3(t), t ∈ (0, τ ],

(1.3)

where η and B represent the fractional order and the diffusion coefficient, respectively. η is described in the Caputo
sense as follows:

∂ηf(x, t)

∂tη
=

1

Γ(n− η)

∫ t

0

(t− s)n−η−1 ∂
nf(x, s)

∂sn
ds, n− 1 < η ≤ n, t > 0, n ∈ N. (1.4)

Recent research has explored various methods to approximate solutions for this type of equation. For instance,
Dehghan et al. [6] proposed a fully discrete method to approximate the time fractional reaction-sub-diffusion equation.
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They used a time discrete scheme based on a finite difference scheme and the meshless Galerkin method to approximate
the spatial derivatives. Hooshmandasl et al. [11] proposed an efficient Galerkin method for solving FSDE. They used
fractional-order Legendre functions (FLFs) as basis functions. Sweilam et al. [22] investigated a straightforward
numerical technique for solving two significant types of FSDE, commonly observed in spiny neuronal dendrites and
chemical reactions.

The spectral method has emerged as a powerful tool for numerically approximating solutions to various fractional
integral and differential equations [16, 18, 31]. Its popularity arises from its versatility in handling problems over
finite and infinite intervals to achieve rapid convergence with minimal grid points, leading to computational efficiency
[17]. This method offers a flexible framework for approximating various fractional equations and their boundary
conditions. The spectral method’s strength lies in its accuracy, efficiency, and adaptability, making it a valuable tool
for understanding and solving complex fractional systems [14].

The intrinsic difficulties associated with fractional equations, such as non-locality, singularity, and intricate spectral
behavior, make their numerical approximation a complex task [2]. A significant advantage of the spectral method is
its ability to efficiently and accurately tackle problems with intricate geometries and boundary conditions. Various
orthogonal polynomials, including Jacobi, Legendre, and Chebyshev polynomials, serve as bases for the spectral
method [24, 25, 27]. Existing studies showcase the application of the spectral method in specific fractional calculus
problems. Zayernouri et al. introduced a spectral collocation technique utilizing fractional Lagrange interpolation for
time fractional partial differential equations (FPDEs) [29]. Zaky et al. proposed the tau method as another approach
to approximate solutions to the fractional diffusion equation [28]. These examples demonstrate the spectral method’s
versatility in addressing various fractional calculus problems, showcasing its ability to handle intricate geometries and
boundary conditions [5]. Overall, the spectral method establishes itself as an efficient tool for solving FPDEs, offering
flexibility, rapid convergence, and the ability to handle complex geometries and boundary conditions.

Several recent studies have explored the spectral method in conjunction with operational matrices as a practical
approach for solving FPDEs over finite and infinite intervals [12, 30]. Operational matrices are powerful tools used
to approximate solutions of FPDEs. This approach represents fractional derivatives in terms of algebraic matrices,
allowing the transformation of FPDEs into a system of algebraic equations [10, 19, 32]. The operational matrix
method provides an efficient and accurate numerical scheme for solving FPDEs [1, 23, 26]. These matrices enable the
computation of approximate solutions with reduced complexity, making them valuable when analytical solutions are
unavailable or computationally expensive [20].

This article presents a novel method for solving Caputo fractional sub-diffusion equations. Our approach combines
operational matrices with spectral techniques based on the shifted Chebyshev polynomials (SCPs). This method
effectively transforms the fractional model into a system of algebraic equations, enabling the computation of efficient
and accurate solutions. Furthermore, we estimate the corresponding error bound and apply the proposed technique
to two sample problems to validate its effectiveness. The remainder of this article is structured as follows:
Section 2 provides an overview of essential concepts in fractional calculus and mathematical preliminaries, including
the properties of Chebyshev polynomials and their derivative computation. Section 3 presents the proposed numerical
algorithm for approximating the solution of the Caputo fractional sub-diffusion equation. In section 4, the error
bound of the proposed method is computed. Section 5 showcases numerical experiments to demonstrate the method’s
efficiency. Finally, a concluding remark summarizes the key findings of the paper.

2. Mathematical preliminaries

In this part, some basic fractional calculus ideas and fundamental principles are reviewed [26].

Definition 2.1. Following are the formulas used to determine the Riemann-Liouville fractional integral of order η > 0.

I0v(t) = v(t),

Iηv(t) =
1

Γ(η)

∫ t

0

v(s)(t− s)(η−1)ds =
1

Γ(η)
tη−1 ∗ v(t), η > 0, t > 0,

(2.1)

where Γ(.) and ∗ represent the gamma function and the convolution operator, respectively.
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Definition 2.2. The Caputo fractional derivative of order η is determined as follows:

Dηv(t) = In−ηDnv(t) = 1
Γ(n−η)

∫ t
0
(t− s)n−η−1 dn

dsn v(s)ds, n− 1 < η ≤ n, t > 0, (2.2)

where Dn is the classical differential operator of order n. The following applies to the Caputo derivation:

Dηti =

{
0, if i ∈ N0 and i < dηe,

Γ(i+1)
Γ(i+1−η) t

(i−η), if i ∈ N0 and i ≥ dηe or i /∈ N and i > bηc.
(2.3)

One of the characteristics of the Caputo derivative is its linearity, i.e.

Dη(
∑n
i=0 aivi(t)) =

∑n
i=0 aiD

ηvi(t), (2.4)

where ai, i = 0, 1, . . . , n are constants.

Definition 2.3. The Legendre weighted Sobolev space on Ω = Ix × It = [0, l]× [0, τ ] is defined as:

Bn(Ω) =

{
f :

∂kf

∂tk
∈ L2(Ω), k = 0, 1, . . . , n

}
, (2.5)

with

(f, u)Bn =

n∑
k=0

(
∂kf

∂tk
,
∂ku

∂tk

)
, ‖f‖Bn = (f, f)

1
2

Bn .

It is worth mentioning that Hn(Ω) is a subspace of (2.5), i.e.:

‖f‖Bn ≤ c‖f‖Hn , n ≥ 0.

Definition 2.4. The Hilbert space H(s,r)(Ω) on Ω = Ix × It = [0, l]× [0, τ ] is defined as:

Hs,r(Ω) = Hr (It,H
s (Ix)) =

{
f ∈ L2(Ω) | ∂

i+jf(x, t)

∂xi∂tj
∈ L2(Ω), 0 ≤ i ≤ s, 0 ≤ j ≤ r

}
. (2.6)

Such that the norm and the inner product are determined as follows:

‖f‖Hs,r =

 s∑
i=0

r∑
j=0

∥∥∥∥∂i+jf(x, t)

∂xi∂tj

∥∥∥∥2

L2(ω)

 1
2

,

〈f, g〉s,r =

s∑
i=0

r∑
j=0

∫ τ

0

∫ l

0

∂i+jf(x, t)

∂xi∂tj

∂i+jg(x, t)

∂xi∂tj
dxdt.

(2.7)

2.1. Chebyshev polynomials. The Chebyshev polynomial of degree j is determined as follows:

G0(t) = 1, G1(t) = t,

Gj+1(t) = 2tGj(t)−Gj−1(t), (2.8)

where j = 0, 1, 2, . . . and t ∈ [−1, 1]. SCPs is defined in the interval [0, τ ] by using a change of variable z = 2t
τ − 1. We

denote Gj(
2t
τ − 1) as Gτ,j(t). The analytical expression for Gτ,j(t) is provided by:

Gτ,j(t) = τ

j∑
k=0

(−1)j−k
(j + k − 1)!22k

(j − k)!(2k)!τk
tk, j = 1, 2, 3, . . . , N, (2.9)

where Gτ,j(0) = (−1)j and Gτ,j(τ) = 1.
Let ωτ (t) = 1√

t(τ−t)
is considered as the weight function for the following space:

L2
ω[0, τ ] :=

{
f | f : [0, τ ]→ R such that

∫ τ

0

ωτ (t)f2(t)dt <∞
}
, (2.10)



CMDE Vol. 13, No. 2, 2025, pp. 420-431 423

The set {Gτ,j(t)}∞j=0 consists of classical Chebyshev polynomials, determine a complete orthogonal system on L2
ω[0, τ ]

[13]. If f(t) ∈ L2
ω[0, τ ] then:

f(t) =

∞∑
j=0

ajGτ,j(t), (2.11)

such that

aj =
4

τπεj

∫ τ

0

f(t)Gτ,j(t)ωτ (t)dt, j = 0, 1, 2, . . . . (2.12)

where

εj =

{
2, j = 0,

1, j ≥ 1.
(2.13)

In practical applications, a finite set of equations, as given by Eq. (2.11), is typically regarded as:

fA(t) =

N∑
j=0

ajGτ,j(t) = ATψτ,N (t), (2.14)

where

ψτ,N (t) = [Gτ,0(t), Gτ,1(t), . . . , Gτ,N (t)],

AT = [a0, . . . , aN ]. (2.15)

Next, we can determine the derivative of ψτ,N (t) through the following relation:

dψτ,N (t)

dt
= D1

τ,Nψτ,N (t), (2.16)

such that D1
τ,N represents operational matrix of derivative as

D1
τ,N = (dis) =


4i
εsτ
, s = 0, 1, . . . , i = s+ c,

{
c = 1, 3, 5, . . . , N − 1, N is even,

c = 1, 3, 5, . . . , N, N is odd,

0, otherwise,

(2.17)

and εs is considered as Eq. (2.13). By utilizing SCPs, any continuous function f(x, t) is expressed in the following
manner:

f(x, t) =

∞∑
i=0

∞∑
j=0

k̂ijGl,i(x)Gτ,j(t), (x, t) ∈ [0, l]× [0, τ ]. (2.18)

After truncating both dimensions, we obtained

fM,N (x, t) =

M∑
i=0

N∑
j=0

k̂ijGl,i(x)Gτ,j(t) = ψTl,M (x)Kψτ,N (t), (2.19)

where

ψl,M (x) = [Gl,0(x), Gl,1(x), . . . , Gl,M (x)]
T
,

ψτ,N (t) = [Gτ,0(t), Gτ,1(t), . . . , Gτ,N (t)]
T
. (2.20)
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and the coefficient matrix K is obtained by

K =


k̂00 k̂01 k̂0N

k̂10 k̂11 · · · k̂1N

...
. . .

...

k̂M0 k̂M1 · · · k̂MN

 , (2.21)

where

k̂ij =
1

hihj

∫ τ

0

∫ l

0

f(x, t)Gl,i(x)Gτ,j(t)ωτ (t)ωl(x)dxdt,

ωl(x) =
1√

x(l − x)
, ωτ (t) =

1√
t(τ − t)

,

hi =
εi
2
π, hj =

εj
2
π.

(2.22)

εi, εi for i = 0, 1, . . . ,M, j = 0, 1, . . . , N are considered as Eq. (2.13).
The following theorem states that the fractional derivative of SCPs can be determined using an operational matrix
form.

Theorem 2.5. Let ψτ,N (t) denote the shifted Chebyshev vector defined in Equation (2.20), and η represent the
fractional derivative order. The following relationship holds:

Dηψτ,N (t) ' Dη
τ,Nψτ,N (t). (2.23)

In this case, Dη
τ,N represents the operational matrix of the fractional derivative, which has dimensions (N+1)×(N+1)

and we have:

Dη
τ,N =



0 0 0 · · · 0
...

...
... · · ·

...
0 0 0 · · · 0

dη(dηe, 0) dη(dηe, 1) dη(dηe, 2) · · · dη(dηe, N)
...

...
... · · ·

...
dη(p, 0) dη(p, 1) dη(p, 2) · · · dη(p,N)

...
...

... · · ·
...

dη(N, 0) dη(N, 1) dη(N, 2) · · · dη(N,N)


, (2.24)

where

dη(p, q) =

p∑
c=dηe

(−1)p−c2p(p+ c− 1)!Γ
(
c− η + 1

2

)
εqτηΓ

(
c+ 1

2

)
(p− c)!Γ(c− η − q + 1)Γ(c+ q − η + 1)

. (2.25)

where p = dηe, ..., N and q = dηe, ..., N and εq is considered as Eq. (2.13). Not that the first dηe are zeros in Eq.
(2.24) and dηe denotes ceiling function.

Proof. [9]. �

Moreover, similar to Eq. (2.17), we can compute D1
l,M(x). It is obvious that

Dm
l,M(x) =

(
D1

l,M(x)
)m
, m ∈ N. (2.26)
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3. The proposed method

This section outlines a suggested approach for estimating the solution of the model (1.1)-(1.3). First of all, we
rewrite Eq. (1.1)-(1.3) as follows:

∂ηf(x, t)

∂tη
−B∂

2f(x, t)

∂x2
= f(x, 0)− f1(x) +Q(x, t), (3.1)

with boundary condition

f(0, t) = f2(t), t ∈ (0, τ ],
f(l, t) = f3(t), t ∈ (0, τ ].

(3.2)

By substituting operational matrix define in Eqs. (2.19), (2.23), and (2.26) in Eq. (3.1), we obtain

ψTl,M (x)
(
KDη

τ,N −B
(
D2

l,M

)T
K
)
ψτ,N (t) = ψTl,M (x)Kψτ,N (0)− f1(x) +Q(x, t), (3.3)

We consider the roots of Gl,M−1(x) and Gτ,N+1(t) as collocation nodes, denoted by xi for i = 0, 1, . . . ,M− 2 and tj

for j = 0, 1, . . . ,N respectively. we obtain a system of algebraic equations with a total order of (M− 1)× (N + 1) by
utilizing these collocation nodes in Eq. (3.3), i.e.:

ψTl,M (xi)
(
KDη

τ,N −B
(
D2

l,M

)T
K
)
ψl,M (tj) = ψTl,M (xi)Kψτ,N (0)− f1(xi) +Q(xi, tj). (3.4)

It is necessary 2(N + 1) additional equations to ensure a unique solution for the system (3.4). Therefore, we use Eq.
(2.19) in the boundary condition, i.e.:

ψTl,M (0) Kψτ,N (t) = f2 (tj) ,

ψTl,M (l) Kψτ,N (t) = f3 (tj) ,
(3.5)

where j = 0, 1, . . . , N . By associating Eq. (3.5) with Eq. (3.4) yields (M + 1) × (N + 1) nonlinear system equation
which is solved by the Newton method. Then, K is applied in Eq. (2.19) to compute the approximation of f(x, t).

4. Error bound

In this part, we demonstrate an error bound for the proposed method. Let Ω = Ix × It = [0, l] × [0, τ ] and
PM,N (Ω) = span{Gl,i(x)Gτ,j(t), i = 1, . . . ,M, j = 1, . . . , N}. ΠM,Nf is defined from L2(Ω) into PM,N (Ω) in the
following manner

(ΠM,Nf − f, u) = 0,∀u ∈ PM,N (Ω),

in other words,

(ΠM,Nf)(x, t) =

M∑
i=0

N∑
j=0

aijGl,i(x)Gτ,j(t).

Indeed, ΠM,Nf represents the best approximation of f out of PM,N (Ω) [21]. Initially, it is necessary to proof the
following Theorems 4.1, 4.2, and 4.3.

Theorem 4.1. For any f ∈ Hs(Ω), we have

‖Dq
x (f −ΠMf)‖L2(Ω) ≤ C1

√
(M − s+ 1)!

(M − q + 1)!
(M + s)

q−s
2 ‖∂sxf‖Hs , 0 ≤ q < s ≤M + 1, q ∈ N, (4.1)

where C1 is a constant and q ∈ N and Hs(Ω) is considered as defined in Definition 2.3. Therefore,

≤ C1

√
(M − s+ 1)!

(M − q + 1)!
(M + s)

q−s
2 ‖f‖Hs . (4.2)

and

‖Dq
x (f −ΠMf)‖L2(Ω) ≤ C1

√
(M − s+ 1)!

(M − q + 1)!
(M + s)

q−s
2 ‖f‖Hs . (4.3)



426 M. MOLAVI-ARABSHAHI, J. RASHIDINIA, AND M. YOUSEFI

Proof. [21] �

Theorem 4.2. Suppose ΠM,Nf is the projection of f upon PM,N as

(ΠM,Nf)(x, t) = fM,N (x, t). (4.4)

There are constants C2 and C3 for any function f ∈ L2(Ω) such that

‖f −ΠM,Nf‖L2(Ω) ≤ C2

√
(M− s + 1)!

(M + 1)!
(M + s)−

s
2 ‖f‖Hs,0 + C3

√
(N− r + 1)!

(N + 1)!
(N + r)−

r
2 ‖f‖H0,r , (4.5)

where 0 ≤ s ≤ M + 1 and 0 ≤ r ≤ N + 1, s, r ∈ N. Hs,0 and H0,r are considered as Definition 2.4.

Proof. [3]. �

Theorem 4.3. Assume that r ∈ N, nη − 1 < η ≤ nη = dηe, nη < r ≤ N + 1 and f ∈ L2(Ω) then

‖Dη
t f −Dη

t (ΠM,Nf)‖L2(Ω) ≤
Cη

√
(N−r+1)!

(N−nη+1)! (N + r)
(nη−r)

2

Γ(nη − η + 1)
‖f‖H0,r , (4.6)

Where C3 is constant. Also, H0,r is considered as Definition 2.4.

Proof. Employing Eq. (2.1), and the Following Eq. [3]

‖f ∗ g‖L2(Ω) ≤ ‖f‖1‖g‖L2(Ω). (4.7)

we obtain

‖Dη
t f −D

η
t (ΠM,Nf)‖2L2(Ω) =

∥∥Inη−η (Dnη
t f −Dnη

t (ΠM,Nf)
)∥∥2

L2(Ω)
,

= ‖ 1

t1+η−nηΓ(nη − η)
∗
(
D

nη
t f −D

nη
t (ΠM,Nf)

)
‖2L2(Ω),

≤ ‖ 1

t1+η−nηΓ(nη − η)
‖21
∥∥Dnη

t f −Dnη
t (f)

∥∥2

L2(Ω)
,

(4.8)

According to [3] and Theorem 4.1,

≤
(

1

Γ(nη − η + 1)

)2
(
Cη

√
(N − r + 1)!

(N − nη + 1)!
(N + r)

(nη−r)
2

)2

‖f‖2H0,r . (4.9)

�

Assume fM,N(x, t) denotes the numerical solution obtained by the proposed method. The error between f(x, t) and
fM,N (x, t) is obtained as follows:

eM,N(x, t) = fM,N(x, t)− f(x, t).

To establish the convergence, it is essential to demonstrate that fM,N (x, t) converges towards f(x, t) as M,N →∞.
By substituting fM,N (x, t) into Eq. (3.1), we have:

∂ηfM,N(x, t)

∂tη
= B

∂2fM,N(x, t)

∂x2
+ Q(x, t) + fM,N(x, 0)− f1(x) + RM,N(x, t), (4.10)

where RM,N (x, t) called the residual function and

fM,N (0, t) = f2(t), fM,N (l, t) = f3(t), (4.11)

by subtraction Eq. (4.10) from Eq. (3.1). We obtain

RM,N (x, t) =
∂ηeM,N (x, t)

∂tη
−B∂

2eM,N (x, t)

∂x2
, (4.12)

with boundary conditions

eM,N (0, t) = 0, eM,N (l, t) = 0, (4.13)
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By taking norm on the both sides of Eq. (4.12) and using the triangle inequality

‖RM,N (x, t)‖L2(Ω) ≤
∥∥∥∥∂ηeM,N (x, t)

∂tη

∥∥∥∥
L2(Ω)

+

∥∥∥∥B∂2eM,N (x, t)

∂x2

∥∥∥∥
L2(Ω)

. (4.14)

According to Theorems 4.1 and 4.3, we obtain

‖RM,N (x, t)‖L2(Ω) ≤
Cη

√
(N−r+1)!

(N−nη+1)! (N + r)
(nη−r)

2

Γ(nη − η + 1)
‖f‖H0,r +BC

√
(M − s+ 1)!

(M − 2 + 1)!
(M + s)

2−s
2 ‖f‖Hs,0 , (4.15)

where Cη and C are constants. When M,N →∞, we have ‖RM,N‖ → 0. Therefore, fM,N (x, t) approaches to f(x, t)
as M,N →∞.

5. Numerical examples

All computations were performed by applying MATLAB 2023 on a Laptop with 12th Gen Intel CoreTMi7 and
16GB,DDR4 memory. Also, the maximum absolute errors (MAEs) are derived as

eM,N := max {|f (xi, tj)− fM,N (xi, tj)|} , i = 0, 1, . . . ,M, j = 0, 1, . . . , N. (5.1)

Example 5.1. The sub-diffusion equation is considered as follows:

∂ηf(x, t)

∂tη
=
∂2f(x, t)

∂x2
+ sinπx

(
Γ(1 + η) + π2tη

)
, η ∈ (0, 1], x ∈ (0, 1), t ∈ (0, 1], (5.2)

and

f(x, 0) = 0, x ∈ [0, 1],

f(0, t) = 0, t ∈ (0, 1], (5.3)

f(1, t) = 0, t ∈ (0, 1],

The exact solution of Eqs. (5.2) and (5.3) is

f(x, t) = tη sinπx. (5.4)

The numerical errors eM,N for M = N, M = 5, 7, 9, 11 and η = 0.1, 0.3, 0.5, 0.7, 0.9 are tabulated in Table 1. The
absolute error plotted in Figure 1. In Figures 2(a) and 2(b), the contour plots of the exact and the approximate
solution are illustrated, respectively.

Table 1. The numerical errors eM,N for various values of M and N as the number of collocation
points for Example 5.1.

M = N 5 7 9 11
η = 0.1 4.7725E − 06 1.2185E − 06 4.7165E − 07 3.62001E − 07
η = 0.3 3.5222E − 06 8.1345E − 07 2.9182E − 07 8.8966E − 08
η = 0.5 4.9956E − 06 1.0398E − 06 3.0072E − 07 1.0682E − 07
η = 0.7 9.6609E − 06 1.4863E − 06 3.7532E − 07 1.2641E − 07
η = 0.9 3.3110E − 06 4.3095E − 07 7.5592E − 08 2.6987E − 08

Example 5.2. The following fractional sub-diffusion equation is considered as

∂ηf(x, t)

∂tη
=
∂2f(x, t)

∂x2
+ ex

(
Γ(2 + η)t− t1+η

)
, η ∈ (0, 1], x ∈ (0, 1), t ∈ (0, 1], (5.5)
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Figure 1. The graph of absolute error, with N = M = 7 and η = 0.75, for Example 5.1.

Figure 2. Contour plots for (a) the exact and (b) the approximate solution, N = M = 7 and η = 0.75
for Example 5.1.

and

f(x, 0) = 0, x ∈ [0, 1],

f(0, t) = t1+η, t ∈ (0, 1], (5.6)

f(1, t) = e1t1+η, t ∈ (0, 1].

The exact solution of Eqs. (5.5) and (5.6) is f(x, t) = ext1+η. The numerical errors eM,N for M = N, M = 5, 7, 9, 11,
and η = 0.1, 0.3, 0.5, 0.7, 0.9 are tabulated in Table 2. The absolute error is plotted in the Figure 3. In Figure 4(a)
and Figure 4(b), the contour plots of the exact and the approximate solution are illustrated, respectively.

Table 2. The numerical errors eM,N for various values of M and N as the number of collocation
points for Example 5.2.

M = N 5 7 9 11
η = 0.1 2.8389E − 04 1.5035E − 04 9.2124E − 05 7.5181E − 05
η = 0.3 2.4838E − 04 1.1691E − 04 6.4991E − 05 3.7091E − 05
η = 0.5 3.0098E − 05 5.0472E − 06 4.0842E − 06 3.5394E − 06
η = 0.7 9.2509E − 05 2.2176E − 05 6.5376E − 06 2.7481E − 06
η = 0.9 2.2265E − 05 6.7575E − 06 4.7999E − 06 2.4070E − 06
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Figure 3. The graph of absolute error, with N = M = 7 and η = 0.75, for Example 5.2.

Figure 4. Contour plots for (a) the exact and (b) the approximate solution, N = M = 7 and η = 0.75
for Example 5.2.

6. Conclusion

This study introduces a novel numerical hybrid method based on the spectral method and operational matrix
for solving Caputo’s type fractional sub-diffusion equations. The theoretical convergence analysis demonstrates the
method’s convergence properties. Moreover, the numerical results obtained from various test problems validate the
accuracy of the method. This study contributes to the field of fractional calculus by providing a novel method for
solving sub-diffusion equations. Its accuracy and effectiveness makes it an effective tool for researchers in related fields,
allowing them to explore the application of this method to more complex problems and extend its capabilities to other
types of fractional differential equations.
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