- [1] T. Aktosun and M. Unlu, A generalized method for the darboux transformation, Journal of Mathematical Physics 63 (2022), 103501.
- [2] M. Ali, M. A. Khattab, and S. Mabrouk, Investigation of travelling wave solutions for the (3 + 1)-dimensional hyperbolic nonlinear schrödinger equation using riccati equation and f-expansion techniques, Optical and Quantum Electronics, 55 (2023), 991.
- [3] M. Ali, M. A. Khattab, and S. Mabrouk, Travelling wave solution for the landau-ginburg-higgs model via the inverse scattering transformation method, Nonlinear Dynamics, 111 (2023), 7687–7697.
- [4] S. Demiray, Ö. Ünsal, and A. Bekir, Exact solutions of nonlinear wave equations using (G’/G,1/G)-expansion method, Journal of the Egyptian Mathematical Society, 23(1) (2015), 78-84.
- [5] M. K. Elboree, The jacobi elliptic function method and its application for two component bkp hierarchy equations, Computers & Mathematics with Applications, 62(12) (2011), 4402-4414.
- [6] K. A. Gepreel and S. Omran, Exact solutions for nonlinear partial fractional differential equations, Chinese Physics B, 21(11) (2012), 110204.
- [7] O. F. Gözükızıl, and S¸. Akçağıl,¨ The tanh-coth method for some nonlinear pseudoparabolic equations with exact solutions, Advances in Difference Equations, 2013(143) (2013), 1-18.
- [8] M. M. A. Khater, S. Muhammad, A. Al-Ghamdi, and M. Higazy, Novel soliton wave solutions of the vakhnenko–parkes equation arising in the relaxation medium, Journal of Ocean Engineering and Science, (2022).
- [9] K. Khan and P. M. A. Akbar, The exp(−φ(ξ))−expansion method for finding traveling wave solutions of vakhnenko-parkes equation, International Journal of Dynamical Systems and Differential Equations, 5(1) (2014), 72-83.
- [10] S. Kumar, Painlev´e analysis and invariant solutions of Vakhnenko–Parkes (VP) equation with power law nonlinearity, Nonlinear Dynamics, 85 (2016), 1275–1279.
- [11] S. Kumar and N. Mann, Abundant closed-form solutions of the (3+ 1)-dimensional Vakhnenko-Parkes equation describing the dynamics of various solitary waves in ocean engineering, Journal of Ocean Engineering and Science, (2022).
- [12] V. Kuetche Kamgang, T. Bouetou Bouetou, and K. Timoleon Crepin, On high-frequency soliton solutions to a (2+1)-dimensional nonlinear partial differential evolution equation, Chinese Physics Letters, 25(2) (2008), 425.
- [13] S. Mabrouk and A. Rashed, On the G′/G expansion method applied to (2+1)-dimensional asymmetric-NizhnikNovikov-Veselov equation, Journal of Advances in Applied & Computational Mathematics, 10 (2023), 39-49.
- [14] S. M. Mabrouk, A. M. Wazwaz, and A. S. Rashed, Monitoring dynamical behavior and optical solutions of spacetime fractional order double-chain deoxyribonucleic acid model considering the atangana’s conformable derivative, Journal of Applied and Computational Mechanics, 10(2) (2024), 383-391.
- [15] S. M. Mabrouk, H. Rezazadeh, H. Ahmad, A. S. Rashed, U. Demirbilek, and K. A. Gepreel, Implementation of optical soliton behavior of the space–time conformable fractional Vakhnenko–Parkes equation and its modified model, Optical and Quantum Electronics, 56(2) (2024), 222.
- [16] M. Mohamed, S. M. Mabrouk, and A. S. Rashed, Mathematical investigation of the infection dynamics of covid-19 using the fractional differential quadrature method, Computation, 11(10) (2023),198.
- [17] N. A. Mohamed, A. S. Rashed, A. Melaibari, H. M. Sedighi, and M. A. Eltaher, Effective numerical technique applied for Burgers’ equation of (1+1)-, (2+1)-dimensional, and coupled forms, Mathematical Methods in the Applied Sciences, 44(13) (2021), 10135-10153.
- [18] A. S. Rashed, M. Inc, and R. Saleh, Extensive novel waves evolution of three-dimensional yu–toda–sasa–fukuyama equation compatible with plasma and electromagnetic applications, Modern Physics Letters B,37(1) (2023), 2250195.
- [19] A. S. Rashed, A. N. M. Mostafa, A. M. Wazwaz, and S. M. Mabrouk, Dynamical behavior and soliton solutions of the Jumarie’s space-time fractional modified Benjamin-Bona-Mahony equation in plasma physics, Romanian Reports in Physics, 75 (2023), 104.
- [20] A. S. Rashed, A. N. M. Mostafa, and S. M. Mabrouk, Abundant families of solutions for (4+1)-dimensional Fokas fractional differential equation using new sub-equation method, Scientific African, 23 (2024), e02107.
- [21] H. O. Roshid, M. R. Kabir, R. C. Bhowmik, and B. K. Datta, Investigation of solitary wave solutions for Vakhnenko-Parkes equation via exp-function and exp (−φ(ξ))−expansion method, SpringerPlus, 3(1) (2014), 692.
- [22] Y. Sağlam Ozkan, A. R. Seadawyö, and E. Yaşar, Multi-wave, breather and interaction solutions to (3+1) dimensional Vakhnenko–Parkes equation arising at propagation of high-frequency waves in a relaxing medium, Journal of Taibah University for Science, 15(1) (2021), 666-678.
- [23] N. Shang and B. Zheng, Exact solutions for three fractional partial differential equations by the (G’/G) method, International Journal of Applied Mathemaics, 43(3) (2013), 114-119.
- [24] V. Vakhnenko, Solitons in a nonlinear model medium, Journal of Physics A: Mathematical and General, 25(15) (1992), 4181.
- [25] A. M. Wazwaz, Multiple-soliton solutions for the KP equation by hirota’s bilinear method and by the tanh–coth method, Applied Mathematics and Computation, 190(1) (2007), 633-640.
- [26] A. M. Wazwaz, The integrable Vakhnenko–Parkes (vp) and the modified Vakhnenko–Parkes (mVP) equations: Multiple real and complex soliton solutions, Chinese Journal of Physics, 57 (2019), 375-381.
- [27] A. Yusuf, T. A. Sulaiman, A. Abdeljabbar, and M. Alquran, Breather waves, analytical solutions and conservation laws using lie–bäcklund symmetries to the (2+1)-dimensional chaffee–infante equation, Journal of Ocean Engineering and Science, 8(2) (2023), 145-151.
- [28] L. Zhang, C. Li, and H. Wang, Backlund transformations of multi-component boussinesq and degasperis-procesi equations, International Journal of Geometric Methods in Modern Physics, 21(3) (2024), 2450066.
|