- [1] A. H. Bhrawy, et al., Dispersive optical solitons with SchrodingerHirota equation., Journal of Nonlinear Optical Physics & Materials, 23(01) (2014), 1450014.
- [2] G. W. Bluman and S. Kumei, Symmetries and Differential Equations, Springer-Verlag, New York, 1989.
- [3] Y. Chen, et al., Dark wave, rogue wave and perturbation solutions of Ivancevic option pricing model., Nonlinear Dynamics, 105 (2021), 2539–2548.
- [4] K. Debin , H. Rezazadeh , N. Ullah , J. Vahidi, U. T. Kalim, and L. Akinyemi, New soliton wave solutions of a (2+1)-dimensional Sawada-Kotera equation, Journal of Ocean Engineering and Science, 8 (2023), 527–532.
- [5] M. Eslami, M. Mirzazadeh, and A. Biswas, Soliton solutions of the resonant nonlinear Schrodinger's equation in optical fibers with time dependent coefficients by simplest equation approach, J. Mod. Opt., 60(19) (2013), 16271636.
- [6] M. R. A. Fahim, et al., Wave profile analysis of a couple of (3+ 1)-dimensional nonlinear evolution equations by sine-Gordon expansion approach. Journal of Ocean Engineering and Science, 7(3) (2022), 272279.
- [7] E. Fan and H. Zhang, A note on the homogeneous balance method, Phys. Lett., A 246 (1998), 403406.
- [8] Z. S. Feng, The First integral method to study the Burgers-KdV equation, J. Phys. A: Math. Gen., 35 (2002), 343349.
- [9] A. K. Gupta and S. S. Ray., Numerical treatment for the solution of fractional fifth-order SawadaKotera equation using second kind Chebyshev wavelet method Applied Mathematical Modelling, 39 (2015), 51215130.
- [10] J. H. He and X. H. Wu, Exp-function method for nonlinear wave equations, Chaos, Solitons & Fractals, 30(3) (2006), 700708.
- [11] J. H. He, Approximate solution of nonlinear differential equations with convolution product nonlinearities, Computer Methods in Applied Mechanics and Engineering, 167(1-2) (1998), 6973.
- [12] R. Hirota, The Direct Method in Soliton Theory, Cambridge University Pres, Cambridge, 2004.
- [13] D. Kaup, On the inverse scattering problem for the cubic eigenvalue problems of the class ψ3x + 6Qψx + 6Rψ = λψ, Stud. Appl. Math., 62 (1980), 189216.
- [14] A. Khaled, The Modified Kudryashov Method for Solving Some Seventh Order Nonlinear PDEs, Mathematical Physics, 11 (2015), 308319.
- [15] A. Kilicman and R. Silambarasan, Modified Kudryashov method to solve generalized Kuramoto-Sivashinsky equation, Symmetry 10, 10 (2018), 527.
- [16] N. A. Kudryashov, One method for finding exact solutions of nonlinear differential equations, Commun. Nonlinear Sci. Numer. Simul. Commun. Nonlinear Sci. Number, 17 (2011).
- [17] N. A. Kudryashov, Method of the logistic function for finding analytical solutions of nonlinear differential equations, Model. Anal. Inf. Syst., 22 (2015), 2337.
- [18] N. A. Kudryashov, Logistic function as solution of many nonlinear differential equations, Appl. Math. Model., 39(18) (2015), 57335742.
- [19] N. A. Kudryashov, Method for finding highly dispersive optical solitons of nonlinear differential equations, Optik, 206 (2020), 63550.
- [20] B. A. Kupershmidt, A super KdV equation: an integrable system, Phys. Lett. A, 102 (1984), 213215.
- [21] W. X. Ma, R. Zhou, and L. Gao, Exact one-periodic and two-periodic wave solutions to Hirota bilinear equations in (2+1) dimensions., Modern Physics Letters A, 24(21) (2009), 16771688.
- [22] C. L. Mader, Numerical Modeling of Water Waves, Numerical Modeling of Water Waves, Jun. 2004.
- [23] W. Malfliet and W. Hereman, The tanh method. I: exact solutions of nonlinear evolution and wave equations, Phys. Scripta, 54 (1996), 563568.
- [24] R. M. Miura, Backlund Transformation, Springer-Verlag, New York, 1973.
- [25] M. Ozisik, A. Secer, M. Bayram, and H. Aydin, An encyclopedia of Kudryashov's integrability approaches applicable to optoelectronic devices, Optik, 265 (2022), 169499.
- [26] K. Sawda and T. Kotera, A Method Finding N-Soliton Solutions of the Kdv and KdV-Like Equations, Prog. Theor. Phys., 51 (1974), 135567.
- [27] H. Srivastava, D. Baleanu, M. T. M. Jos, H. Rezazadeh, S. Arshed, and G. Hatira, Traveling wave solutions to nonlinear directional couplers by modified Kudryashov method, Phys. Scr., 95 (2020), 075217.
- [28] M. Wang, X. Li, and J. Zhang, The (G/G)-expansion method and travelling wave solutions of nonlinear evolution equations in mathematical physics, Phys. Lett. A., 372 (2008), 417423.
- [29] M. L. Wang, Solitary wave solutions for variant Boussinesq equations, Phys. Lett. A, 199 (1995), 169172.
- [30] A. M. Wazwaz, The tanhcoth method for solitons and kink solutions for nonlinear parabolic equations, Appl. Math. Comput. 188 (2007), 14671475.
- [31] A. M. Wazwaz, Abundant solitons solutions for several forms of the fifth-order KdV equation by using the tanh method, Appl. Math.Comput., 182 (2006), 283300.
- [32] C. Yan, A simple transformation for nonlinear waves, Phys. Lett. A., 224 (1996), 7784.
- [33] C. Yan, A simple transformation for nonlinear waves, Physics Letters A, 224(1-2) (1996), 7784.
- [34] A. Yildirim, A. S. Paghaleh, M. Mirzazadeh, and H. Moosaei, A. Biswas, New exact traveling wave solutions for DS-I and DS- II equations, Nonlinear Anal.: Modell. Control. 17(3) (2012), 369378.
- [35] E. M. E. Zayed, R. M. A. Shohib, and M. E. M. Alngar, Cubic-quartic optical solitons in Bragg gratings fibers for NLSE having parabolic non-local law nonlinearity using two integration schemes, Optical and Quantum Electronics, 53(8) (2021), 452.
- [36] E. M. E. Zayed, M. E. M. Alngar, and R. M. A. Shohib, Cubic-quartic embedded solitons with χ (2) and χ (3) nonlinear susceptibilities having multiplicative white noise via It calculus, Chaos, Solitons & Fractals, 168 (2023), 113186.
- [37] E. M. E. Zayed, et al. Solitons in magneto-optics waveguides for the nonlinear BiswasMilovic equation with Kudryashov's law of refractive index using the unified auxiliary equation method. Optik, 235 (2021), 166602.
|