- [1] A. Alipanah and M. Dehghan, Solution of population balance equations via rationalized Haar functions, Kybernetes, 37 (2008), 1189–1196.
- [2] A. Alipanah and M. Zafari, Collocation method using auto-correlation functions of compact supported wavelets for solving Volterra’s population model, Chaos, Solitons and Fractals, 175 (2023).
- [3] I. A. Bhat, L. N. Mishra, N. N., Mishra, C. Tun, and O. Tun, Precision and efficiency of an interpolation approach to weakly singular integral equations, International Journal of Numerical Methods for Heat and Fluid Flow, 34 (2024), 1479–1499.
- [4] J. Biazar and K. Hosseini, Analytic approximation of Volterras population model, JAMSI, 13 (2017), 5–17.
- [5] R. Y. Chang and M. L. Wang, Shifted Legendre function approximation of differential equations; application to crystalization processes, J. Chem. Engng, 8 (1984), 117–25.
- [6] M. Q. Chen, C. Hwang, and Y. P. Shih, A Wavelet-Galerkin method for solving population balance equations, Computers Chem. Engng, 20 (1996), 131–145.
- [7] H. Dehestani, Y. Ordokhani, and M. Razzaghi, On the applicability of Genocchi wavelet method for different kinds of fractional order differential equations with delay, Numer, Linear Algebr., 26 (2019).
- [8] H. Dehestani, Y. Ordokhani, and M. Razzaghi, A numerical technique for solving various kinds of fractional partial differential equations via Genocchi hybrid functions, Revista de la Real Academia de Ciencias Exactas, Fsicas y Naturales. Serie A. Matematicas, 113 (2019), 3297–3321.
- [9] A. S. Firdous, M. Irfan, and S. N. Kottakkaran, Gegenbauer wavelet quasi-linearization method for solving fractional population growth model in a closed system, Mathematical Methods in the Applied Sciences, 45 (2022), 3605–3623.
- [10] B. Fornberg, A practical guide to pseudospectral methods, Cambridge, 1999.
- [11] F. Ghomanjani, A numerical method for solving Bratus problem, Palestine Journal of Mathematics, 11 (2022), 372–377.
- [12] S. Hu, M. S. Kim, P. Moree, and M. Sha, Irregular primes with respect to Genocchi numbers and Artin’s primitive root conjecture, Journal of Number Theory 205 (2019), 50–80.
- [13] C. Hwang and Y. P. Shih, Solutions of population balance equations via block pulse functions, J. Chem. Engng, 25 (1982), 39–45.
- [14] A. Isah and C. Phang, Genocchi wavelet-like operational matrix and its application for solving nonlinear fractional differential equations, Open Phys., 14 (2016), 46–472.
- [15] A. Kanwal, C. Phang, and U. Iqbal, Numerical solution of fractional diffusion wave equation and fractional KleinGordon equation via two-dimensional Genocchi polynomials with a RitzGalerkin method, Computation, 6 (2018).
- [16] J. R. Loh. and C. Phang, A new numerical scheme for solving system of Volterra integro-differential equation, Alex. Eng. J., 57 (2018), 1117–1124.
- [17] M. Lotfi and A. Alipnah, Implementation of auto-correlation functions of compactly supported wavelets to population balance differential equation, The 6th Seminar on Numerical Analysis and Its Applications, Maraghe, Iran (2016).
- [18] M. M. Matar, Existence of solution involving Genocchi numbers for nonlocal anti-periodic boundary value problem of arbitrary fractional order, Revista de la Real Academia de Ciencias Exactas, Fsicas y Naturales. Serie A. Matematicas, 112 (2018), 945–956.
- [19] S. T. Mohyud-Din, A. Yldrm, and Y. Glkanat, Analytical solution of Volterra’s population model, Journal of King Saud University - Science, 22, (2010), 247–250.
- [20] A. D. Randolph, Effect of crystal breakage on crystal size distribution in a mixed suspension crystallizer. I and EC Fund. 8 (1969), 58–63.
- [21] A. D. Randolph and M. A. Larson, Theory of Particulate Processes, 2nd Edn. Academic Press, New York, 1988.
- [22] F. Rigi and H. Tajadodi, Numerical approach of fractional Abel differential equation by genocchi polynomials, International Journal of Applied and Computational Mathematics, 5 (2019), 1–11.
- [23] S. H. Rim, K. H. Park, and E. J. Moon, On Genocchi numbers and polynomials, Abstr. Appl. Anal. 2008.
- [24] A. Saadatmandi, A. Khani, and M. A. Azizi, A sinc-Gauss-Jacobi collocation method for solving Volterra’s population growth model with fractional order, Tbilisi Mathematical Journal 11 (2018), 123–137.
- [25] F. M. Scudo, Vito Volterra and theoretical ecology, Teoretical Population Biology, 2 (1971), 1–23.
- [26] P. N. Singh and D. Ramkrishna, Solution of population balance equations by WRM, Comput. Chem. Engng, 1 (1977), 23–31.
- [27] R. D. Small, Population growth in a closed system, SIAM Review, 25 (1983), 93–95.
- [28] H. M. Srivastava, F. A. Shah, and M. Irfan, Generalized wavelet quasilinearization method for solving population growth model of fractional order, Mathematical Methods in the Applied Sciences, 43 (2020), 8753-8762.
- [29] G. Swaminathan, G. Hariharan, V. Selvaganesan, and S. Bharatwaja, A new spectral collocation method for solving Bratutype equations using Genocchi polynomials, Journal of Mathematical Chemistry, (2021).
- [30] H. Tajadodi, Efficient technique for solving variable order fractional optimal control problems, Alex. Eng. J., 59, (2020), 5179–5185.
- [31] I. Talib and F. Özger, Orthogonal polynomials based operational matrices with applications to bagleytorvik fractional derivative differential equations, IntechOpen, (2023).
- [32] I. Talib and M. Bohner, Numerical study of generalized modified caputo fractional differential equations, International Journal of Computer Mathematics, 100 (2023), 153–176.
- [33] I. Talib, A. N. Zulfiqar, Z. Hammouch, and H. Khalil, Compatibility of the Paraskevopouloss algorithm with operational matrices of VietaLucas polynomials and applications, Mathematics and Computers in Simulation, 202 (2022), 442–463.
- [34] I. Talib, A. Raza, A. Atangana, and M. B. Riaz, Numerical study of multi-order fractional differential equations with constant and variable coefficients, Journal of Taibah University for Science, 16 (2022), 608–620.
- [35] I. Talib, N. Alam, D. Baleanu, and D. Zaidi, decomposition algorithm coupled with operational matrices approach with applications to fractional differential equations, Thermal Science, 25 (2021), 449–455.
- [36] K. G. TeBeest, Numerical and analytical solutions of Volterras population model, SIAM Rev, 39 (1997), 484–493.
- [37] O. Tunç and C. Tunç, Solution estimates to Caputo proportional fractional derivative delay integrodifferential equations, Rev. R. Acad. Cienc. Exactas Fs. Nat. Ser. A Mat. RACSAM, 117 (2023).
- [38] C. Tunç and O. Tunç, A note on the qualitative analysis of Volterra integro-differential equations, Journal of Taibah University for Science, 13 (2019), 490–496.
- [39] Ş. Yüzbaş, A numerical approximation for Volterras population growth model with fractional order, Applied Mathematical Modelling, 37 (2013), 3216–3227.
- [40] Ş. Yüzbaş, Improved Bessel collocation method for linear Volterra integro-differential equations with piecewise intervals and application of a Volterra population model, Applied Mathematical Modelling, 40 (2016), 5349–5363.
- [41] Ş. Yüzbaş, M. Sezer, and B. Kemanc, Numerical solutions of integro-differential equations and application of a population model with an improved Legendre method, Applied Mathematical Modelling 37 (2013), 2086–2101.
|