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Abstract
This study employs the cubic B-spline collocation strategy to address the solution challenges posed by the nonlinear

generalized Burgers-Fisher’s equation (gBFE), with some improvisation. This approach incorporates refinements
within the spline interpolants, resulting in enhanced convergence rates along the spatial dimension. Temporal

integration is achieved through the Crank-Nicolson methodology. The stability of the technique is assessed us-

ing the rigorous von Neumann method. Convergence analysis based on Green’s function reveals a fourth-order
convergence along the space domain and a second-order convergence along the temporal domain. The results are

validated by taking a number of examples. MATLAB 2017 is used for computational work.
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1. Introduction

The non-linear generalized Burgers-Fisher equation (gBFE) is a mathematical model that combines elements of the
classical Burgers equation, introduced by Jan Burgers [7], and the Fisher equation, proposed by Ronald Fisher [10].
The gBFE emerged as a synthesis of these two fundamental equations, combining the convection and diffusion terms
of the Burgers equation with the reaction term of the Fisher equation. The combination resulted in a nonlinear partial
differential equation that finds applications in various fields, but not limited to fluid dynamics, combustion theory,
population ecology, and nonlinear optics etc. The general form of the gBFE is as follows:

qt + δqγqx = Pqxx + αq(1− qγ), x ∈ (a, b), t ≥ 0, (1.1)

with the boundary and initial conditions as follows:

q(a, t) = s1(t), q(b, t) = s2(t), t ≥ 0, (1.2)

q(x, 0) = r(x), x ∈ [a, b], (1.3)

Here the mathematical symbol q(x, t) represents the dependent variable, P is the diffusion coefficient, which controls
the rate of diffusion or dispersion of the dependent variable, α is the reaction coefficients that govern the nonlinear
reaction and growth processes within the system, δ is the convection term, s1(t), s2(t), r(x) are sufficiently smooth
functions with respect to space x and time t.

The Eq. (1.1) contains two nonlinear terms, therefore the traditional analytic methods like Laplace and Fourier
transforms are inadequate for system integration. Keeping this in view, Fan [9] derived the traveling wave solution of
the gBFE using the extended tanh-function and Riccati equation. Kaya and Sayed [16] obtained the explicit series
solution, without any transformation and compared it with the numerical solution obtained through the Adomian
decomposition method. Ismail et al. [13] extended this method to solve the Burgers-Fisher’s and Burgers-Huxley
equations. Javidi [14] utilized a combination of pseudospectral Chebyshev and fourth-order Runge-Kutta methods
(RK-4). Golbabai and Javidi [11] employed spectral domain decomposition with Chebyshev polynomials for spatial
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derivatives and RK4 for time integration. Sari et al. [23] applied sixth-order compact finite difference method (CFDM6)
for spatial discretization and the third-order RK method for temporal discretization.

A fourth-order FDM for spatial discretization and an improvised predictor-corrector method to solve the resulting
nonlinear system were implemented by Bratsos [5]. Tatari et al. [30] utilized the collocation method with radial
basis functions in conjunction with the predictor-corrector method to solve the system of nonlinear equations. Mittal
and Tripathi [18] implemented the cubic B-spline collocation method for space discretization and the Crank-Nicolson
scheme for time. Saeed and Gilani [21] proposed a combination of CAS wavelet method with quasi-linearization scheme.
Sangwan and Kaur [22] employed uniform Shishkin mesh for the spatial domain with exponentially fitted splines, and
adapted an implicit Euler method for temporal discretization, utilizing quasi-linearization to handle the nonlinear
terms. Bratsos and Khaliq [6] opted for exponential time differencing technique with the method of lines, solving a
nonlinear system with a second-order modified predictor-corrector scheme. Verma and Kayenat [31] proposed the exact
finite difference scheme and non-standard finite difference method, to obtain the solitary wave solution and numerical
solution of the given equation. Namjoo et al. [19] presented a numerical solution method employing the nonstandard
finite-difference (NSFD) scheme. They also discussed two exact finite-difference schemes before introducing the NSFD
scheme, examining its positivity, consistency, and boundedness.

Kaur et al. [15] employed the sixth-order compact FDM to analyze this equation. This method utilized nonstandard
discretization of spatial derivatives and optimized time integration via the strong stability-preserving Runge-Kutta
method, achieving third-order accuracy in the time domain. Shang and Chen [27] explore this equation with spatiotem-
poral variable coefficients, relevant to nonlinear convection-diffusion phenomena in fields like chemical engineering and
biology. By demonstrating exact linearization of the Burgers-Fisher’s equation under certain coefficient constraints,
Bäcklund and generalized Cole-Hopf transformations are established, facilitating explicit exact solutions and providing
valuable insights its behavior and solutions. Mendoza and Muriel [17] derived the novel traveling wave solutions by
linearizing nonlinear second-order equations via generalized Sundman transformation. It yielded a unified expression
encompassing various reported solutions, extending to Lerch transcendent function-based expressions depending on
two arbitrary parameters. Hussain and Haq [12] implemented the meshfree spectral interpolation technique for spatial
discretization and the Crank-Nicolson scheme for temporal discretization, to solve the proposed equation. Arora et al.
[4] presented a robust Hermite collocation method for numerically solving the proposed equation. They utilized fifth-
order Hermite splines for both solution variables and their spatial derivatives, in conjunction with the Crank-Nicolson
finite difference scheme for time derivatives, ensuring stability.

In this study, we employed an extrapolated cubic B-spline collocation algorithm to investigate the gBFE (1.1),
building upon previous work by Shallu et al. [24–26] applied to various equations. The splines are applied for spatial
discretization and Crank- Nicolson for temporal discretization. The paper is organized as follows: Section 2 deals with
the optimal B-spline collocation methodology (OCSCM), section 3 demonstrates the implementation of the proposed
technique, section 4 conducts spatial convergence analysis, and section 5 employs the von Neumann method to evaluate
stability. Section 6 showcases solved examples to illustrate the effectiveness and enhancements of the technique, while
section 7 offers overall summary.

2. Optimal Cubic B-Spline Collocation Methodology

Consider partitioning of the space domain [a, b] as: a = x0 ≤ x1 ≤ ... ≤ xN−1 ≤ xN = b, where xk+1 = xk + h, for
k = 0, 1, 2, ..., N , with h = (b − a)/N as the spatial step length. Additionally, four extra nodal points are necessary
outside the interval [a, b] and positioned as x−2 ≤ x−1 ≤ x0 and xN ≤ xN+1 ≤ xN+2. The cubic B-spline functions
can be written as [20]:

Ck,3(x) =
1

h3



(x− xk−2)3, x ∈ [xk−2, xk−1],

h3 + 3h2(x− xk−1) + 3h(x− xk−1)2 − 3(x− xk−1)3, x ∈ [xk−1, xk],

h3 + 3h2(xk+1 − x) + 3h(xk+1 − x)2 − 3(xk+1 − x)3, x ∈ [xk, xk+1],

(xk+2 − x)3, x ∈ [xk+1, xk+2],

0, Otherwise.

(2.1)
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The cubic B-splines constitute the basis of an (N + 3) dimensional subspace of C2[a, b]. The approximate solution
R(x, t), can be expressed as a linear combination of cubic B-splines, as follows:

R(x, t) =

N+1∑
k=−1

dk(t)Ck(x), (2.2)

where dk(t)’s are the time dependent parameters to be calculated.
Let the cubic B-spline interpolant satisfy the conditions:

R(xk, t) = q(xk, t), k = 0(1)N, (2.3)

Rxx(xk, t) = qxx(xk, t)−
h2

12
qxxxx(xk, t), k = 0, N. (2.4)

Theorem 2.1. Let q(x,t) is sufficiently smooth function in [a, b] and satisfy Eqs. (2.3) and (2.4), then:

Rxx(xk, t) = qxx(xk, t)−
h2

12
qxxxx(xk, t) +O(h4), k = 0(1)N, (2.5)

Rx(xk, t) = qx(xk, t) +O(h4), (2.6)

and

‖ R(j) − q(j) ‖∞= O(h4−j), j = 0, 1, 2. (2.7)

Proof. Discussed in [8]. �

Lemma 2.2. For sufficiently smooth function q(x,t), the following relations hold:

qxxxx(x0, t) =
Rxx(x0, t)− 5Rxx(x1, t) + 4Rxx(x2, t)−Rxx(x3, t)

h2
+O(h2),

qxxxx(xk, t) =
Rxx(xk−1, t)− 2Rxx(xk, t) +Rxx(xk+1, t)

h2
+O(h2), k = 1(1)N − 1,

qxxxx(xN , t) =
Rxx(xN , t)− 5Rxx(xN−1, t) + 4Rxx(xN−2, t)−Rxx(xN−3, t)

h2
+O(h2).

Corollary 2.3. For sufficiently smooth function q(x,t), then the following relations hold:

qx(xk, t) = Rx(xk, t) +O(h4), k = 0(1)N,

qxx(x0, t) =
14Rxx(x0, t)− 5Rxx(x1, t) + 4Rxx(x2, t)−Rxx(x3, t)

12
+O(h4),

qxx(xk, t) =
Rxx(xk−1, t) + 10Rxx(xk, t) +Rxx(xk+1, t)

12
+O(h4), k = 1(1)N − 1,

qxx(xN , t) =
14Rxx(xN , t)− 5Rxx(xN−1, t) + 4Rxx(xN−2, t)−Rxx(xN−3, t)

12
+O(h4).

3. Implementation of the Methodology

Consider the uniform temporal discretization: 0 = t0 ≤ t1 ≤ ... ≤ tm ≤ tm+1 ≤ ... ≤ T over [0, T ], with the step
length ∆t = tm+1 − tm, for m = 0, 1, .... The Crank-Nicolson scheme for the temporal discretization of Eq. (1.1) is
as follows:

qm+1 − qm

∆t
+
δ

2

[
(qγqx)m+1 + (qγqx)m

]
=
P
2

[
qm+1
xx + qmxx

]
+
α

2
[qm+1 + qm]− α

2
[(qγ+1)m+1 + (qγ+1)m]. (3.1)
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After applying the quasilinearization process to linearize the nonlinear terms, the following equation is obtained:

[
1

∆t
+
δγ

2
(qγqx)m − α

2
+
α(1 + γ)

2
(qγ−1)m

]
qm+1 +

δ

2
(qγ)mqm+1

x − P
2
qm+1
xx

=
qm

∆t
− δ

2
(1− γ)(qγqx)m +

P
2
qmxx +

α

2
qm − α

2
(1− γ)(qγ+1)m.

(3.2)

At any kth point of the space domain, the above equation can be written as:

Ākq
m+1
k + B̄k(qx)m+1

k − P
2

(qxx)m+1
k = C̄k, (3.3)

where

Āk =
1

∆t
+
δγ

2
(qγqx)mk −

α

2
+
α(1 + γ)

2
(qγ−1)mk , B̄k =

δ

2
(qγ)mk ,

C̄k =
qmk
∆t
− δ

2
(1− γ)(qγqx)mk +

P
2

(qxx)mk +
α

2
qmk −

α

2
(1− γ)(qγ+1)mk .

(3.4)

Substitute the optimal numerically approximate values of q, qx, and qxx and combining the coefficients:

For k = 0:(
Ā0 −

3B̄0

h
− 7P̄

2h2

)
dm+1
−1 +

(
4Ā0 +

33P̄
4h2

)
dm+1
0 +

(
Ā0 +

3B̄0

h
− 7P
h2

)
dm+1
1

+
7P
2h2

dm+1
2 − 3P

2h2
dm+1
3 +

P
4h2

dm+1
4 = C̄0 +O(h4),

a0d
m+1
−1 + b0d

m+1
0 + c0d

m+1
1 + e0d

m+1
2 + f0d

m+1
3 + v0d

m+1
4 = C̄0 +O(h4). (3.5)

For k = 1, 2, ..., N − 1:

− P
4h2

dm+1
j−2 +

(
Āk −

3B̄k
h
− 2P
h2

)
dm+1
k−1

+

(
4Āk +

9P
2h2

)
dm+1
k +

(
Āk +

3B̄k
h
− 2P
h2

)
dm+1
k+1 −

P
4h2

dm+1
k+2 = C̄k +O(h4),

akd
m+1
k−2 + bkd

m+1
k−1 + ckd

m+1
k + ekd

m+1
k+1 + fkd

m+1
k+2 = C̄k +O(h4). (3.6)

For k = N :

P
4h2

dm+1
N−4 −

3P
2h2

dm+1
N−3 +

7P
2h2

dm+1
N−2 +

(
ĀN −

3B̄N
h
− 7P
h2

)
dm+1
N−1 +

(
4ĀN +

33P
2h2

)
dm+1
N

+

(
ĀN +

3B̄N
h
− 7P

2h2

)
dm+1
N+1 = C̄N +O(h4),

aNd
m+1
N−4 + bNd

m+1
N−3 + cNd

m+1
N−2 + eNd

m+1
N−1 + fNd

m+1
N + vNd

m+1
N+1 = C̄N +O(h4). (3.7)

A system of (N + 1) equations in (N + 3) unknowns is obtained from the above equations. The remaining two
equations are the boundary conditions (1.2). The value of coefficient d0 can be calculated at initial time level using
initial condition (1.3).
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4. Convergence Analysis

For the convergence analysis, the Green’s function approach is adopted [25]. These methodologies incorporate
posterior corrections in the B-spline function to accommodate specific end conditions.

Consider Eq. (1.1) in the operator form as follows:

L ≡ Pqxx − qt + F(x, t, q, qx), (4.1)

with the boundary conditions:

Bq = Ω, on ∂Φx × [t0, T ], (4.2)

where F(x, t, q, qx) = −δqγqx + αq(1− qγ), Φx = (a, b), B is the boundary operator defined as Bq = a1(x, t)q(x, t) +
a2(x, t)qx(x, t).

Let L̂ and B̂ be the perturbation operators of L and B respectively after collocation:

L̂R(xk, t) ≡ L[R(xk, t), Rx(xk, t), Rxx(xk, t)

+
1

12
[Rxx(xk, t)− 2Rxx(xk, t)Rxx(xk, t)], for k = 1, 2, ...,M − 1,

L̂R(x0, t) ≡ L[R(x0, t), Rx(x0, t), Rxx(x0, t) +
1

12
[2Rxx(x0, t)− 5Rxx(x1, t)

+ 4Rxx(x2, t)−Rxx(x3, t)], (4.3)

L̂R(xN , t) ≡ L[R(xN , t), Rx(xN , t), Rxx(xN , t) +
1

12
[2Rxx(xN , t)− 5Rxx(xN−1, t)

+ 4Rxx(xN−2, t)−Rxx(xN−3, t)].

B̂R(xk, t) = BR(xk, t), k = 0, N. (4.4)

Also, at the nodal points:

L̂R(xk, t) = O(h4), k = 0, 1, ..., N,

B̂R(xk, t) = O(h4), k = 0, N. (4.5)

The intent is to find a solution q̂(x, t), such that:

L̂q̂(xk, t) = 0, k = 0, 1, ..., N ; B̂q̂(xk, t) = 0, k = 0, N. (4.6)

Lemma 4.1. The coefficient matrix of qxx = G(x, t) having homogeneous boundary constraints is invertible and has
finite norm.

Proof. [25] �

Let R(j), q(j), and q̂(j) be the jth derivatives with respect to the space variable and M denotes the coefficient matrix
of R(1)(x, t), i.e., M̂ = diag(− 5

h , 0,
5
h ), that is invertible with finite norm. Since the BVP of the form (4.1) with the

boundary constraints (4.2) can be transformed into the Fredholm integral equation of order two.
Let q(2) = z and q̂(2) = w such that z and w fulfil the boundary constraint (4.2), then q and q̂ can be expressed

using Green’s function as:

q(j)(x, t) =

∫ b

a

∂jG(x, t, r)

∂xj
z(r, t)dr, j = 0, 1, (4.7)

q̂(j)(x, t) =

∫ b

a

∂jG(x, t, r)

∂xj
w(r, t)dr, j = 0, 1. (4.8)
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Let σ(x, t) be any continuous differentiable function. The operators which are necessary for establishing the con-
vergence analysis is given below:

A : C[a, b] −→ C[a, b] such that Aσ =
1

P
(G0σt − F(x, t,G0σ,G1σ)), (4.9)

where Gjσ =
∫ b
a
∂jG(x,t,r)

∂xj σ(r, t)dr, j = 0, 1 are the operators from [a, b] to [a, b]. Let D represents the piecewise linear

interpolation operator at the points {(xk, t)}Nk=0. Let D be the projection operator:

D : C[a, b] −→ RN+1 such that Dσ = [σ(x0, t), σ(x1, t), ..., σ(xN , t)]
T . (4.10)

E : C[a, b] −→ C[a, b], such that Eσ = [E0σ, E1σ, ..., ENσ]T , (4.11)

where Ekσ =
1

P
(G0σt − F(x, t,G0σ, EkDG1σ)), (4.12)

where Ek denotes the kth row of the coefficient matrix of qx(x, t). Using above definitions, Eqs. (1.1) and (4.6) can be
written as follows:

(I −A)z = 0. (4.13)

(MS − E)w = 0. (4.14)

Since M is an invertible, so

(S −M−1E)w = 0. (4.15)

Since w is a linear polynomial, therefore DSw = w

(I −DM−1E)w = 0. (4.16)

Lemma 4.2. For the equispaced partition of [a, b], DM−1E approaches to Aσ as h→ 0.

Proof:

‖ DM−1Eσ −Aσ ‖∞ ≤‖ DM−1Eσ −DSAσ ‖∞ + ‖ DSAσ −Aσ ‖∞
≤‖ D ‖∞‖M−1 ‖∞‖ Eσ −MSAσ ‖∞ + ‖ DSAσ −Aσ ‖∞
≤‖ Eσ −MSAσ ‖∞ +O(h2).

(4.17)

Theorem 4.3. The below given error bound exists:

‖ q(j)(x, .)− q̂(j)(x, .) ‖∞ = O(h4−j), j = 0, 1, 2.

| q(j)(x, .)− q̂(j)(x, .) |xk = O(h4), j = 0, 1.

| q(2)(x, .)− q̂(2)(x, .) |xk = O(h2).

(4.18)

Proof: Consider the equation R(2) = µ̂, B̂R = O(h4). Then there exists a linear polynomial w̄, such that,

B̂w̄ = B̂R = O(h4), ‖ w̄(j) ‖∞= O(h4), j = 0, 1. (4.19)

Since R(2) − w̄(2) = µ̂, B̂(R− w̄) = 0 has a unique solution. Therefore;

(I −DM−1E)(R(2) − w̄(2)) = O(h4). (4.20)

Deduct Eq. (4.16) from (4.20),

(I −DM−1E)(R(2) − w̄(2) − q̂(2)) = O(h4). (4.21)
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Since (I −DM−1E) is bounded:

‖ R(2) − w̄(2) − q̂(2) ‖∞= O(h4). (4.22)

The equation (R− w̄− q̂)(2) = η̄, B̂(R− w̄− q̂) = 0 has a solution, hence it assures the existence of Green’s function
such that:

| (R− w̄ − q̂)(j) |=
∫ b

a

∂jG(x, t, r)

∂xj
(R(2) − w̄(2) − q̂(2))dr, j = 0, 1. (4.23)

Thus,

‖ (R− w̄ − q̂)(j) ‖∞= O(h4), j = 0, 1. (4.24)

So,

‖ (R− q̂)(j) ‖∞≤‖ (R− w̄ − q̂)(j) ‖∞ + ‖ w̄(j) ‖∞= O(h4), j = 0, 1, 2. (4.25)

Using Theorem 2.1, Eq. (4.25) and triangular inequality, it can be written as:

‖ (q − q̂)(j) ‖∞≤‖ (q −R)(j) ‖∞ + ‖ (R− q̂)(j) ‖∞= O(h4−j), j = 0, 1, 2. (4.26)

�

5. Stability Analysis

The Von Neumann technique is employed to conduct the stability analysis of the proposed optimal cubic B-spline
collocation method (OCSCM). To achieve this, take p = max(q) to linearize the nonlinear terms and discretize the
temporal domain using the Crank-Nicolson scheme as:

qm+1
k − qmk

∆t
+ δpγ

[
(qx)m+1

k + (qx)mk
2

]
= P

[
(qxx)m+1

k + (qxx)mk
2

]
+ α(1− pγ)

[
qm+1
k + qmk

2

]
, (5.1)

Expressing the (m+ 1)th level in terms of mth time level terms at any kth node point as:

E1q
m+1
k +Q1(qx)m+1

k − P
2

(qxx)m+1
k = E2q

m
k +Q2(qx)mk +

P
2

(qxx)mk , (5.2)

where

E1 =
1

∆t
+
α(pγ − 1)

2
; Q1 =

δpγ

2
; E2 =

1

∆t
− α(pγ − 1)

2
; Q2 = −δp

γ

2
.

Substituting the values q, qx, and qxx using the optimal cubic B-splines and simplifying, we get:

p1d
m+1
k−2 + p2d

m+1
k−1 + p3d

m+1
k + p4d

m+1
k+1 + p1d

m+1
k+2 = −p1dmk−2 + p5d

m
k−1 + p6d

m
k + p7d

m
k+1 − p1dmk+2, (5.3)

where

p1 = − P
4h2

; p2 = E1 −
3Q1

h
− 2P
h2

; p3 = 4E1 +
9P
2h2

; p4 = E1 +
3Q1

h
− 2P
h2
,

p5 = E2 −
3Q2

h
+

2P
h2

; p6 = 4E2 −
9P
2h2

; p7 = E2 +
3Q2

h
+

2P
h2
.
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Put dmk = Eηmexp(ikϕh) in Eq. (5.3), where i =
√
−1, E is the amplitude, h is the space step length, and ϕ is the

mode number:, after simplification:

η =
−p1exp(−2iϕh) + p5exp(−iϕh) + p6 + p7exp(iϕh)− p1exp(2iϕh)

p1exp(−2iϕh) + p2exp(−iϕh) + p3 + p4exp(iϕh) + p1exp(2iϕh)

=
−2p1cos(2ϕh) + p6 + (p5 + p7)cos(ϕh) + i(p7 − p5)sin(ϕh)

2p1cos(2ϕh) + p3 + (p2 + p4)cos(ϕh) + i(p4 − p2)sin(ϕh)

=
A1 + iB1
A2 + iB2

,

where

A1 =
P

2h2
cos(2ϕh) +

(
2E2 +

4P
h2

)
cos(ϕh) + 4E2 −

9P
2h2

,

B1 =
6Q2

h
sin(ϕh),

A2 = − P
2h2

cos(2ϕh) +

(
2E1 −

4P
h2

)
cos(ϕh) + 4E1 +

9P
2h2

,

B2 =
6Q1

h
sin(ϕh).

It can be observed that A2
1+B2

1 ≤ A2
2+B2

2 , i.e., |η| ≤ 1, therefore the stability condition of the technique is fulfilled.

6. Numerical Examples

Hereunder, the gBFE is analyzed for different values of parameters. For comparison purposes L∞ and L2 error
norms [25] are calculated.

Example 6.1. Consider the gBFE (1.1) in the domain [0, 1] with α = P = 1, and δ = 0, with the exact solution:

q(x, t) =

[
1

2
− 1

2
tanh

[
γ

2
√

2γ + 4

(
x−

(
γ + 4√
2γ + 4

)
t

)]] 2
γ

, (6.1)

In Table 1, a comparison of L∞ and L2 error norms is given with γ = 1, h = 0.05 and δt = 0.01 at t = 3. The
results with the present optimal technique is found to be better than a mesh-free spectral interpolation technique
[12]. In Table 2, the order of convergence in the temporal domain is computed numerically, which matches with the
theoretical results.

Example 6.2. Consider the gBFE (1.1) in the domain [0, 1]. The solitary wave solution of Eq. (1.1) is given in
Wazwaz [32] as follows:

q(x, t) =

[
1

2
+

1

2
tanh

[
−δγ

2P(γ + 1)

(
x−

(
δ

γ + 1
+
Pα(γ + 1)

δ

)
t

)]] 1
γ

. (6.2)

Case 1. Consider δ = 0.001, P = 1, and α = 0.001 in the gBFE (1.1). The solitary wave solution is given in
Eq. (6.2). Table 3 represents the contrast of absolute error with h = 0.1 and ∆t = 0.0001 for t = 0.001and100 and
γ = 1and4. The contrast shows that results are superior to the Adomian decomposition scheme [13], compact finite
difference method [23], and exponential time differencing method [6]. The CPU time required to compute the absolute
error at t = 0.001 is 0.043872 sec and at t = 100 is 6.489983 sec. Figure 1 shows the resemblance between the solitary
wave and approximate solution at distinct times and Figure 2 represents the 3D surface plot of the approximate
solution.

Case 2. Consider the gBFE (1.1) in the domain [0, 1] with δ = 1, P = 1, and α = 1 at t = 0.001. Table 4 gives the
absolute error at distinct times with h = 0.1 and ∆t = 0.0001 for γ = 2 and 8. This table demonstrates that results
are highly accurate as compared to many existing techniques [13], [23], [6]. The CPU time required to compute the
absolute error at t = 0.001 is 0.043125 sec. The solitary wave behavior and the numerical solution is also represented
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Table 1. Error norm comparison of Example 6.1 at time t = 3.

OCSCM MQ [12] Gs [12] STPS [12] S3 [12]

L∞ 1.2564e-07 4.2587e-04 3.0181e-03 6.9955e-02 3.0869e-01
L2 9.1777e-08 3.1011e-04 1.8124e-03 4.5434e-02 2.2693e-01

Table 2. L∞ and L2 error norms and order of convergence in time domain of Example 6.1 with N = 21.

t=1 t=5

∆t L∞ Order L2 Order L∞ Order L2 Order
0.1 2.5735e-05 - 1.8793e-05 - 2.3629e-06 - 1.7275e-06 -
0.05 6.4342e-06 1.9999 4.6974e-06 2.0003 5.9110e-07 1.9991 4.3214e-07 1.9991
0.025 1.6084e-06 2.0001 1.1743e-06 2.0001 1.4780e-07 1.9998 1.0805e-07 1.9998
0.0125 4.0210e-07 2.0000 2.9356e-07 2.0001 3.6951e-08 2.0000 2.7014e-08 1.9999

by graphs. Figure 3 gives the comparison between solitary wave and approximate solution at distinct times and depicts
the similarity between them. Figure 4 represents the 3D surface plot of the approximate solution.

Case 3. Consider the gBFE (1.1) in the domain [0, 1] with P = 1, δ = 1, and α = 0. The absolute error at distinct
times and different spatial domain points with h = 0.1 and ∆t = 0.0001 for γ = 2 and 3 is given in Table 5. Results
are found to be more superior as compared to [13] and [6]. The CPU time required to compute the absolute error at
t = 0.001 is 0.042149 sec and at t = 2.0 is 6.187059 sec. Figure 5 gives the comparison between solitary wave and
approximate solution at distinct times and depicts the similarity between them. Figure 6 represents the 3D surface
plot of the approximate solution.

Case 4. Consider the gBFE (1.1) in the domain [0, 1] with δ = 0.1, P = 1, and α = −0.0025. Table 6 shows the
absolute error with space step size h = 0.1 and time step size ∆t = 0.0001 for γ = 2, 4, and 8. From the comparison,
it is clear that results with the proposed methodology are superior to many other existing techniques used in [23],
[6]. The CPU time required to compute the absolute error at t = 0.5 is 0.237965 sec, and at t = 2.0 is 6.489983 sec.
Figure 7 demonstrates the resemblance between solitary wave and numerical solution at distinct times and Figure 8
represents the 3D surface plot of the approximate solution.

Example 6.3. Consider the gBFE (1.1) in the domain [0, 1] with δ = 0, γ = 1, and P = 1. Ablowitz and Zeppetella
[1] obtained its exact solution as follows:

q(x, t) =

[
1 + exp

(√
α

6
x− 5αt

6

)]−2
. (6.3)

The solution is computed for α = 6, h = 0.05, and δt = 0.01 and a comparison is shown in Table 7 with meshfree
spectral interpolation technique [12]. In Table 8, absolute error comparison is shown with the trigonometric cubic
spline collocation technique (TCSCM) [2] and radial basis function pseudospectral method (RBF-PS) [3]. In Table
9, a comparison of L2 and L∞ error norms is given with [2] and [3]. In Table 10 comparison of L2 and L∞ error
norms is given with exponential modified cubic B-spline differential quadrature method (EMCS-DQM) [29] and cubic
trigonometric B-spline differential quadrature method (TCS-DQM) [28]. In Table 11, the order of convergence is
computed in temporal domain.

7. Conclusion

The generalized Burgers-Fisher’s equation has been effectively tackled using the proposed optimal cubic B-spline
collocation technique. The incorporation of posterior corrections enhances numerical solution accuracy, significantly
reducing absolute error. With a spatial domain convergence order of four and a temporal domain order of two,
the method outperforms various existing approaches, including the Adomian decomposition method, compact finite
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Table 3. Absolute error comparison of Example 6.2 (Case 1) with δ = 0.001, h = 0.1 and ∆t =
0.0001, α = 0.001.

γ = 1 γ = 4

t x OCSCM [13] [23] [6] [31] ICSCM [23] [6] [31]

0.001 0.1 5.21E-15 1.940e-6 1.010e-7 1.150e-8 2.50e-8 1.77e-15 1.75e-8 7.71e-9 4.20e-8
0.5 1.66E-16 1.940e-6 1.040e-7 3.070e-13 2.50e-8 3.33e-16 1.75e-8 2.07e-13 4.20e-8
0.9 5.55E-17 1.940e-6 1.010e-7 1.150e-8 2.50e-8 1.11e-16 1.75e-8 7.71e-9 4.20e-8

100 0.1 1.52E-14 - 7.530e-7 1.010e-7 2.50e-8 4.42e-14 - 5.73e-8 4.20e-8
0.5 2.59E-14 - 1.040e-6 1.500e-11 2.50e-8 1.03e-14 - 3.51e-12 4.20e-8
0.9 5.55E-15 - 7.530e-7 1.010e-7 2.50e-8 1.66e-15 - 5.73e-8 4.20e-8

Table 4. Absolute error comparison of Example 6.2 (Case 2) with δ = 1, h = 0.1, α = 1, and ∆t = 0.0001.

γ = 2 γ = 8

t x ICSCM [13] [23] [6] [31] ICSCM [23] [6] [31]

0.1 1.03e-11 2.80e-3 1.50e-4 1.08e-5 3.97e-5 3.4743e-10 2.00e-4 4.65e-6 5.15e-5
0.5 2.05e-12 2.69e-3 1.83e-4 1.15e-8 4.11e-5 2.8770e-11 2.74e-4 4.02e-10 6.09e-5
0.9 2.40e-12 2.55e-3 2.00e-4 1.14e-5 4.16e-5 2.3789e-10 3.31e-4 6.00e-6 6.94e-5

Table 5. Absolute error comparison of Example 6.2 (Case 3) with δ = 1, h = 0.1, α = 0, and ∆t = 0.0001.

γ t x OCSCM Ismail [13] Bratsos [6] t ICSCM Bratsos [6]

2 2 0.1 1.1286e-10 1.19e-5 8.34e-5 20 1.1906e-12 2.96e-6
0.5 6.8167e-10 1.50e-5 4.19e-6 5.1861e-11 7.14e-7
0.9 1.2681e-10 1.44e-5 9.48e-5 1.2913e-11 5.66e-6

3 0.001 0.1 1.1582e-9 4.44e-4 9.10e-6 10 5.0684e-10 2.46e-5
0.5 8.0534e-12 1.85e-3 6.75e-9 6.6355e-10 5.11e-6
0.9 6.8473e-10 9.05e-4 1.09e-5 5.5408e-10 4.35e-5

Table 6. Absolute error comparison of Example 6.2 (Case 4) with δ = 0.1, h = 0.1, α = −0.0025,
and ∆t = 0.0001.

γ = 2 γ = 4 γ = 8

t x ICSCM [23] [6] ICSCM [23] [6] ICSCM [23] [6]

0.5 0.1 4.252e-14 1.670e-5 9.580e-6 5.746e-13 2.000e-5 6.830e-6 3.148e-12 2.200e-5 4.140e-6
0.5 2.109e-15 4.690e-5 5.180e-8 2.420e-14 5.640e-5 1.930e-8 2.331e-14 6.220e-5 3.470e-8
0.9 3.442e-14 1.710e-5 9.660e-6 5.044e-13 2.070e-5 7.010e-6 3.068e-12 2.280e-5 4.300e-6

2.0 0.1 6.051e-14 - 9.590e-6 5.369e-13 - 6.860e-6 3.116e-12 - 4.200e-6
0.5 3.553e-15 - 5.260e-8 5.329e-15 - 1.890e-8 3.919e-14 - 3.450e-8
0.9 3.186e-14 - 9.670e-6 4.998e-13 - 7.040e-6 3.069e-12 - 4.350e-6

difference method, and exponential time differencing scheme with the method of lines. Demonstrating computational
efficiency through diverse illustrative examples solidifies the method’s efficacy.
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Table 7. Error norm comparison of Example 6.3 at time t = 3.

OCSCM MQ [12] Gs [12] STPS [12] S3 [12]

L∞ 1.2232e-10 1.0691e-08 2.7746e-06 6.9973e-02 5.5812e-01
L2 8.9369e-11 7.8156e-09 1.6765e-06 5.1058e-02 4.6894e-01

Table 8. Absolute error comparison of Example 6.3 with α = 6, N = 21 and ∆t = 1.0E − 06.

t=0.0001 t=0.0003

x OCSCM TCSCM [2] RBF-PS [3] OCSCM [2] RBF-PS [3]
0.1 1.2671E-11 6.67E-08 6.92E-10 4.9634E-11 1.99E-7 1.08E-09
0.2 2.0708E-12 7.09E-08 1.80E-10 9.9502E-12 2.13E-7 2.88E-10
0.3 3.6526E-14 7.37E-08 1.64E-10 1.0378E-13 2.21E-7 2.91E-10
0.4 2.7645E-14 7.52E-08 8.09E-11 1.1907E-13 2.26E-7 1.09E-10
0.5 2.4591E-14 7.54E-08 2.40E-11 9.8699E-14 2.26E-7 1.72E-13
0.6 2.2926E-14 7.44E-08 2.09E-11 9.2149E-14 2.23E-7 2.23E-12
0.7 2.1483E-14 7.23E-08 7.58E-11 8.5695E-14 2.17E-7 1.38E-10
0.8 2.0275E-14 6.64E-08 1.99E-11 8.0075E-14 2.08E-7 3.73E-13
0.9 2.4383E-14 6.58E-08 3.32E-10 8.8873E-14 1.95E-7 5.32E-10

Table 9. L∞ and L2 error norms of Example 6.3 with α = 6, N = 21 and ∆t = 1.0E − 06.

Time OCSCM TCSCM [2] RBF-PS [3]

t L2 L∞ L2 L∞ L2 L∞
0.0001 1.8952E-11 8.6584E-11 1.2502E-04 7.0594E-05 3.2149E-08 7.8441E-09
0.0002 3.0797E-11 1.2354E-10 2.5006E-04 1.5179E-04 6.8818E-08 1.6753E-08
0.0003 4.1298E-11 1.7344E-10 3.7514E-04 2.4280E-04 1.0982E-07 2.6699E-08
0.0004 5.7017E-11 2.5774E-10 5.0025E-04 3.4091E-04 1.5500E-07 3.7660E-08

Table 10. L∞ and L2 error norms of Example 6.3 with α = 2000, h = 0.025 and ∆t = 1.0E − 05.

Time OCSCM EMCS-DQM [29] TCS-DQM [28]

t L2 L∞ L2 L∞ L2 L∞
0.001 5.2425e-06 1.8481e-05 9.0884E-04 5.1823e-03 9.0885e-04 5.1825e-03
0.0015 8.8365e-06 2.5985e-05 4.4933E-04 2.4526e-03 4.4929e-04 2.4525e-03
0.002 1.3313e-05 3.7386e-05 2.0939E-04 1.1091e-03 2.0926e-04 1.1090e-03
0.0025 2.1303e-05 4.9185e-05 9.5672E-05 4.9251e-04 9.4903e-05 4.9250e-04
0.003 2.3215e-05 6.5270e-05 4.6126E-05 2.1682e-04 4.2602e-05 2.1682e-04
0.0035 2.8761e-05 8.0524e-05 3.0024E-05 9.5010E-05 2.0027e-05 9.5013e-05
0.004 3.4632e-05 9.6946e-05 2.8783E-05 7.2326E-05 1.5605e-05 4.1524e-05
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Table 11. L∞ and L2 error norms and order of convergence in time domain of Example 6.3 with N = 20.

t=1 t=5

∆t L∞ Order L2 Order L∞ Order L2 Order
0.1 2.2445e-04 - 1.6505e-04 - 7.4805e-06 - 1.5227e-06 -
0.05 5.8300e-05 1.9448 4.2608e-05 1.9537 9.6733e-07 2.9511 2.7721e-07 2.4576
0.025 1.4694e-05 1.9883 1.0740e-05 1.9881 1.9615e-07 2.3021 6.7786e-08 2.0319
0.0125 3.6812e-06 1.9970 2.6904e-06 1.9971 4.3192e-08 2.1831 1.6974e-08 1.9977
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