- [1] M. E. Anderson and T. H. Feil, Lattice-Ordered Groups: An Introduction, D. Reidel; U.S.A. and Canada: Kluwer Academic Publishers, Dordrecht, Holland, 1988.
- [2] L. P. Belluce, A. Di Nola, and A.R. Ferraioli, MV-semirings and their sheaf representations, Order, 30 (2013), 165–179.
- [3] S. Bonzio, I. Chajda, and A. Ledda, Representing quantum structures as near semirings, Logic Journal of the IGPL, 24 (2016), 719–742.
- [4] S. Bonzio, I. Chajda, and A. Ledda, Representing quantum structures as near semi rings, Logic Journal of the IGPL, 4 (2016), 719–742.
- [5] I. Chajda, Algebraic theory of tolerance relations, University Palack, 1991.
- [6] I. Chajda and H. Langer, Commutative basic algebras and coupled near semirings, Soft Computing, 19 (2015), 1129–1134.
- [7] M. Dellnitz and O. Junge, Set oriented numerical methods for dynamical systems, Handbook of dynamical systems, 2 (2002), 221–264.
- [8] G. Hummer and I. G. Kevrekidis, Molecular dynamics of a peptide fragment: Free energy, kinetics, and long-time dynamics computations, The Journal of chemical physics, 118(23) (2003), 10762–10773.
- [9] P. Holmes, J. L. Lumley, G. Berkooz, and C. W. Wand Rowley, Turbulence, coherent structures, dynamical systems and symmetry, Cambridge University Press, 2012.
- [10] I. G. Kevrekidis, L. D. Schmidt, and R. Aris, On the dynamics of periodically forced chemical reactors, Chemical engineering communications, 30(6) (1984), 323–330.
- [11] A. N. Kolmogorov, New metric invariant of transitive dynamical systems and automorphisms of Lebesgue spaces, Dokl. Russ. Acad. Sci., 119 (1958), 861–864.
- [12] W. M. Liu, H. W. Hethcote, and S. A. Levin, Dynamical behavior of epidemiological models with nonlinear incidence rates, Journal of mathematical biology, 25(4) (1987), 359–380.
- [13] I. Mezic, Analysis of fluid flows via spectral properties of the Koopman operator, Annual Review of Fluid Mechanics, 45 (2013), 357–378.
- [14] A. Molkhasi, On strrongly algebraically closed lattices, J Sib. Fed. Univ. Math. Phys., 9(2) (2016), 202–208.
- [15] A. Molkhasi, On some strongly algebraically closed semirings, Journal of Intelligent and Fuzzy Systems, 36(6) (2019), 6393–6400.
- [16] A. Molkhasi and K. P. Shum, Strongly algebraically closed orthomodular near semirings, Rendiconti del Circolo Matematico di Palermo Series 2, 69(3) (2020), 803–812.
- [17] D. Markechovi, A. Ebrahimzadeh, and Z. Eslami Giski, Logical entropy of dynamical systems, Adv. Differ. Equ., 2018(70) 2018.
- [18] D. Markechovi and B. Riecan, Logical entropy of dynamical systems in product MV-algebras and general scheme, Advances in Continuous and Discrete Models, 9 (2019).
- [19] D. Mundici, Interpretation of AFC*-algebras in Lukasiewicz sentential calculus, J. Funct. Anal., 56 (1986), 889– 894.
- [20] H. Poincare, Sur le probleme des trois corps et les equations de la dynamique, Acta Mathematica, 13 (1890), A3–A270.
- [21] J. Petrovicovi, On the entropy of partitions in product MV-algebras, Soft Comput., 4 (2000), 41–44.
- [22] J. Petrovicovi, On the entropy of dynamical systems in product MV-algebras, Fuzzy Sets Syst., 121 (2001), 347– 351.
- [23] B. Riecan and D. Markechovi, ϕ-Entropy of IF-partitions, Notes IFS, 23 (2017), 9–15.
- [24] S. H. Strogatz, Nonlinear dynamics and chaos: with applications to physics, biology, chemistry, and engineering, CRC press, 2018.
- [25] C. F. Shannon and W. Weaver, Mathematical theory of communication, University of Illinois Press, Urbana, 1949.
- [26] Y. G. Sinai, On the notion of entropy of a dynamical system, Dokl. Russ. Acad. Sci., 124 (1959), 768–771.
- [27] J. Walleczek, Self-organized biological dynamics and nonlinear control: toward understanding complexity, chaos and emergent function in living systems, Cambridge University, 2006.
|