تعداد نشریات | 44 |
تعداد شمارهها | 1,303 |
تعداد مقالات | 16,020 |
تعداد مشاهده مقاله | 52,485,460 |
تعداد دریافت فایل اصل مقاله | 15,213,032 |
بررسی همدمای جذب آهن در توده زنده و مرده باسیلوس سوبتیلیس و سودوموناس پوتیدا | ||
دانش آب و خاک | ||
مقاله 6، دوره 34، شماره 3، مهر 1403، صفحه 89-104 اصل مقاله (776.31 K) | ||
شناسه دیجیتال (DOI): 10.22034/ws.2024.57988.2531 | ||
نویسندگان | ||
نوشین ورمزیار* 1؛ علی اکبر صفری سنجانی2 | ||
1گروه خاک، دانشکده کشاورزی، دانشگاه بوعلی سینا، همدان، ایران | ||
2دانشکده کشاورزی دانشگاه بوعلی سینا | ||
چکیده | ||
چکیده افزایش اندازه پسابها و رها کردن بدون پالایش آنها در زیستگاه های آبی و خاکی مایه آلودگی و به هم زدن همسنگی در بوم سازهها می شود.آلاینده های دشوارساز می تواند فلزهای سنگین و حتی عناصر غذایی باشند.زیست بهسازی به عنوان یک فناوری پاک پیشنهاد شده است که در آن از توده زیستی جانداران به گونه زنده یا مرده برای زدایش آلودگی ها بهره گیری می کنند.در این پژوهش پیامد گونه ریزجاندار باکتری و زنده بودن آن بر جذب زیستی عنصر سنگین آهن بررسی شد. توده های زیستی از دو گونه باکتری آماده و ناب سازی شد.پس از انبوه سازی،توده مرده آنها به کمک سترون سازی آماده شد.آزمون همدمای جذب آهن در محلول زمینه نیترات سدیم 0/01 مولار با pHثابت 2/5 بررسی گردید.بررسی همدمای جذب آهن در باکتریها نشان داد،مدل خطی بهتر از دیگر مدلها بر داده های آن برازش می شود.بیش ترین اندازه جذب آهن در باکتری باسیلوس در دو ریخت زنده و مرده به ترتیب به اندازه 41/9 و49/2 میلی گرم در گرم و بیش ترین اندازه جذب آهن در توده زنده و مرده باکتری سودوموناس به ترتیب با اندازه 24/6 و25/1 میلی گرم در گرم بود.پیامد فاکتور زنده بودن توده زیستی بر جذب عنصر آهن در زیست توده باکتریایی از دیدگاه آماری چشمگیر نبود ولی در برابر باکتری گرم منفی سودوموناس پوتیدا،باکتری گرم مثبت باسیلوس سوبتیلیس جاذب شایستهتری برای یون آهن بود که می تواند نامزد خوبی برای تحقیقات در زمینههای زیست کاوی فلزات سنگین،زیست پالایی آبهای آلوده و/ یا ساخت کودهای زیستی آهن باشد. | ||
کلیدواژهها | ||
آهن؛ باسیلوس سوبتیلیس؛ جذب؛ سودوموناس پوتیدا؛ همدما | ||
مراجع | ||
Abrahim N, 2010. Adsorption of metyhlene blue and ferrous ion from aqueous solution using coconut husk. BSc Thesis, University Malaysia Pahang.
Adamson AW and Gast AP, 1967. Physical Chemistry of Surfaces. Interscience publishers, New York.
Ansari MI and Malik A, 2007. Biosorption of nickel and cadmium by metal resistant bacterial isolates from agricultural soil irrigated with industrial wastewater. Bioresource Technology 98(16):3149-3153.
Ayangbenro AS and Babalola OO, 2017. A new strategy for heavy metal polluted environments: a review of microbial biosorbents. International Journal of Environmental Research and Public Health 14(1):94.
Bansal RC and Goyal M, 2005. Activated Carbon Adsorption. CRC press, Boca Raton.
Bautista LF, Pinilla J, Aracil J and Martínez M, 2002. Adsorption isotherms of aspartame on commercial and chemically modified divinylbenzene− styrene resins at different temperatures. Journal of Chemical and Engineering Data 47: 620-627.
Bishnoi NR, Kumar R and Bishnoi K, 2007. Biosorption of Cr (VI) with Trichoderma viride immobilized fungal biomass and cell free Ca-alginate beads. Indian Journal of Experimental Biology 45(7):657-664.
Cai YA, Li D, Liang Y, Luo Y, Zeng H and Zhang J, 2015. Effective start-up biofiltration method for Fe, Mn, and ammonia removal and bacterial community analysis. Bioresource Technology 176:149-155.
Chen XC, Wang YP, Lin Q, Shi JY, Wu WX and Chen YX, 2015. Biosorption of copper (II) and zinc (II) from aqueous solution by Pseudomonas putida CZ1. Colloids and Surfaces B: Biointerfaces 46(2):101-107.
Cotoras D, Viedma P, Cifuentes L and Mestre A, 1992. Sorption of metal ions by whole cells of Bacillus and Micrococcus. Environmental Technology 13(6):551-559.
El-Naggar NE, Hamouda RA, Mousa IE, Abdel-Hamid MS and Rabei NH, 2018. Biosorption optimization, characterization, immobilization and application of Gelidium amansii biomass for complete Pb2+ removal from aqueous solutions. Scientific Reports 8(1):13456.
Freundlich H, 1907. Über die adsorption in lösungen. Zeitschrift Für Physikalische Chemie 57(1):385-470.
Ghasemi FF, Dobaradaran S, Raeisi A, Esmaili A, Mohammadi MJ, Keshtkar M, Nasab SG and Soleimani F, 2016. Data on Fe (II) biosorption onto Sargassum hystrix algae obtained from the Persian Gulf in Bushehr Port, Iran. Data in Brief 9:823-827.
Goel S, Malik JA and Nayyar H, 2009. Molecular approach for phytoremediation of metal-contaminated sites. Archives of Agronomy and Soil Science 55(4):451-475.
Hansda A and Kumar V, 2015. Biosorption of copper by bacterial adsorbents: a review. Research Journal of Environmental Toxicology 9(2):45-58.
Henze M, Harremoes P, Arvin E and la Cour Jansen J, 1999. Wastewater Treatment. Biological and Chemical Processes. China Architecture and Building Press, Beijing.
Huang W and Liu ZM, 2013. Biosorption of Cd (II)/Pb (II) from aqueous solution by biosurfactant-producing bacteria: isotherm kinetic characteristic and mechanism studies. Colloids and Surfaces B: Biointerfaces 105:113-119.
Kanamarlapudi SL and Muddada S, 2020. Biosorption of iron (II) by Lactobacillus fermentum from aqueous solutions. Polish Journal of Environmental Studies 29(2):1659-1670.
Kobya M, Demirbas E, Senturk E and Ince M, 2005. Adsorption of heavy metal ions from aqueous solutions by activated carbon prepared from apricot stone. Bioresource Technology 96(13):1518-1521.
Kour D, Rana KL, Yadav AN, Yadav N, Kumar M, Kumar V, Vyas P, Dhaliwal HS and Saxena AK, 2020. Microbial biofertilizers: Bioresources and eco-friendly technologies for agricultural and environmental sustainability. Biocatalysis and Agricultural Biotechnology 23:101487.
Langmuir I, 1916. The constitution and fundamental properties of solids and liquids. Part I. Solids. Journal of the American Chemical Society 38(11):2221-2295.
Langmuir I, 1918. The adsorption of gases on plane surfaces of glass, mica and platinum. Journal of the American Chemical Society 40(9):1361-1403.
Li X, Xiao Q, Shao Q, Li X, Kong J, Liu L, Zhao Z and Li R, 2023. Adsorption of Cd (II) by a novel living and non-living Cupriavidus necator GX_5: optimization, equilibrium and kinetic studies. BMC Chemistry 17(1):54.
Liu QS, Zheng T, Li N, Wang P and Abulikemu G, 2010. Modification of bamboo-based activated carbon using microwave radiation and its effects on the adsorption of methylene blue. Applied Surface Science 256(10):3309-3315.
Lund P, Tramonti A and De Biase D, 2014. Coping with low pH: molecular strategies in neutralophilic bacteria. FEMS Microbiology Reviews 38(6):1091-1125.
Mane VS, Mall ID and Srivastava VC, 2007. Kinetic and equilibrium isotherm studies for the adsorptive removal of Brilliant Green dye from aqueous solution by rice husk ash. Journal of Environmental Management 84(4):390-400.
McFarland J, 1907. The nephelometer: an instrument for estimating the number of bacteria in suspensions used for calculating the opsonic index and for vaccines. Journal of the American Medical Association 49(14):1176-1178.
Mohapatra RK, Parhi PK, Pandey S, Bindhani BK, Thatoi H and Panda CR, 2019. Active and passive biosorption of Pb (II) using live and dead biomass of marine bacterium Bacillus xiamenensis PbRPSD202: Kinetics and isotherm studies. Journal of Environmental Management 247:121-134.
Nakajima A and Tsuruta T, 2004. Competitive biosorption of thorium and uranium by Micrococcus luteus. Journal of Radioanalytical and Nuclear Chemistry 260(1):13-18.
Nakajima A, Yasuda M, Yokoyama H, Ohya-Nishiguchi H and Kamada H, 2001. Copper biosorption by chemically treated Micrococcus luteus cells. World Journal of Microbiology and Biotechnology 17:343-347.
Pardo R, Herguedas M, Barrado E and Vega M, 2003. Biosorption of cadmium, copper, lead and zinc by inactive biomass of Pseudomonas putida. Analytical and Bioanalytical Chemistry 376:26-32.
Qin S, Ma F, Huang P and Yang J, 2009. Fe (II) and Mn (II) removal from drilled well water: A case study from a biological treatment unit in Harbin. Desalination 245(1-3):183-193.
Quintelas C, Rocha Z, Silva B, Fonseca B, Figueiredo H and Tavares T, 2009. Removal of Cd (II), Cr (VI), Fe (III) and Ni (II) from aqueous solutions by an E. coli biofilm supported on kaolin. Chemical Engineering Journal 149(1-3):319-324.
Sabae S, Hazaa M, Hallim S, Awny N and Daboor S, 2006. Bioremediation of Zn, Cu and Fe using Bacillus subtilis d215 and Pseudomonas putida biovar ad 225. Bioscience Research 3(1):189-204.
Safari Sinegani AA, Sharifi Z and Safari Sinegani M, 2010. Methods in Applied Microbiology. Bu-Ali Sina University Press, Hamadan. (In Persian)
Selatnia A, Boukazoula A, Kechid N, Bakhti MZ and Chergui A, 2004. Biosorption of Fe3+ from aqueous solution by a bacterial dead Streptomyces rimosus biomass. Process Biochemistry. 39(11):1643-1651.
Shokoohi R, Saghi M, Ghafari H and Hadi M, 2009. Biosorption of iron from aqueous solution by dried biomass of activated sludge. Journal of Environmental Health Science and Engineering 6(2):107-114.
Temkin MI, 1940. Kinetics of ammonia synthesis on promoted iron catalysts. Acta Physiochim. URSS 12:327-356.
Tsezos M, Remoudaki E and Angelatou V, 1995. A systematic study on equilibrium and kinetics of biosorptive accumulation. The case of Ag and Ni. International Biodeterioration and Biodegradation 35(1-3):129-153.
Uslu G and Tanyol M, 2006. Equilibrium and thermodynamic parameters of single and binary mixture biosorption of lead (II) and copper (II) ions onto Pseudomonas putida: effect of temperature. Journal of Hazardous Materials 135(1-3):87-93.
Vijayaraghavan K and Yun YS, 2008. Bacterial biosorbents and biosorption. Biotechnology Advances 26(3):266-291.
Wang J and Chen C, 2006. Biosorption of heavy metals by Saccharomyces cerevisiae: a review. Biotechnology Advances 24(5):427-451.
Zouboulis AI, Loukidou MX and Matis KA, 2004. Biosorption of toxic metals from aqueous solutions by bacteria strains isolated from metal-polluted soils. Process Biochemistry 39(8):909-916.
| ||
آمار تعداد مشاهده مقاله: 140 تعداد دریافت فایل اصل مقاله: 66 |