![سامانه مدیریت نشریات علمی دانشگاه تبریز](./data/logo.png)
تعداد نشریات | 44 |
تعداد شمارهها | 1,323 |
تعداد مقالات | 16,270 |
تعداد مشاهده مقاله | 52,954,393 |
تعداد دریافت فایل اصل مقاله | 15,624,999 |
A NEW APPROXIMATE ANALYTICAL METHOD FOR SOLVING SOME NON-LINEAR BOUNDARY VALUE PROBLEMS IN REACTION-DIFFUSION MODEL | ||
Computational Methods for Differential Equations | ||
مقالات آماده انتشار، پذیرفته شده، انتشار آنلاین از تاریخ 12 اردیبهشت 1403 اصل مقاله (1.29 M) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22034/cmde.2024.60438.2586 | ||
نویسندگان | ||
Vembu Ananthaswamy* 1؛ Venkatasubban Vijayalaskhmi2؛ Jeya Kumar Anantha Jothi2 | ||
1Research Centre and PG Department of Mathematics, The Madura College (Affiliated to Madurai Kamaraj University), Madurai, Tamil Nadu, India. | ||
2Research Scholar, Research Centre and PG Department of Mathematics, The Madura College (Affiliated to Madurai Kamaraj University), Madurai, Tamil Nadu, India. | ||
چکیده | ||
The applications of a Reaction-Diffusion boundary value problem are found in science, biochemical applications, and chemical applications. The Ananthaswamy-Sivasankari method (ASM) is employing to solve the considered specific models like non-linear reaction-diffusion model in porous catalysts, spherical catalysts pellet, and catalytic reaction-diffusion process in a catalyst slab. An accurate semi-analytical expression for the concentrations and effectiveness factors are given in explicit form. Graphical representations are used to display the impacts of several parameters, including the Thiele modulus, characteristic reaction rate, concentration of half saturation, reaction order and dimensionless constant in Langmuir-Hinshelwood kinetics. The impact of numerous parameters namely the Langmuir-Hinshelwood kinetics and Thiele modulus on effectiveness factors are display graphically. Our semi-analytical findings shows good match in all parameters when compared to numerical simulation using MATLAB. Many non-linear problems in chemical science especially, the Reaction-Diffusion equations, Michaelis-Menten kinetic equation, can be resolved with the aid of the new approximate analytical technique, ASM. | ||
کلیدواژهها | ||
Spherical Porous catalyst؛ Steady-state Reaction-Diffusion equation؛ Non-linear boundary value problem؛ Ananthaswamy-Sivasankari method (ASM)؛ Numerical Simulation | ||
آمار تعداد مشاهده مقاله: 100 تعداد دریافت فایل اصل مقاله: 215 |