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Abstract
The motive of this paper is to investigate the SEIQRD model of the COVID-19 outbreak in Indonesia with

the help of a fractional modeling approach. The model is described by the nonlinear system of six fractional

order differential equations (DE) incorporating the Caputo Fabrizio Fractional derivative (CFFD) operator. The
existence and uniqueness of the model are proved by applying the well-known Banach contraction theorem. The

reproduction number (R0) is calculated, and its sensitivity analysis is conducted concerning each parameter of the

model for the prediction and persistence of the infection. Moreover, the numerical simulation for various fractional
orders is performed using the Adams-Bashforth technique to analyze the transmission behavior of disease and

to get the approximated solutions. At last, we represent our numerical simulation graphically to illustrate our

analytical findings.
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1. Introduction

The COVID-19 infection continues to shape the world in different ways and affected almost every facet of life.
The SARS-CoV-2 virus was first found in Wuhan, China in 2019 and is still challenging the worlds economy, medical
systems, social life, etc. Although the incubation period of COVID-19 is generally 5 to 6 days it can range up to 14
days. Dry cough, fever, loss of taste and smell, weakness, discomfort in the muscles and joints, etc. are some of the
primary signs and indications of COVID-19 [18]. Symptoms vary from person to person based upon their immunity.
Age also plays the role as the children are effected rarely but the elders are more severely effected. Vaccinations
and isolation are the significant factors to prevent the propagation of COVID-19. Many researchers are tracking the
spread of this virus and figuring out to analyze the impact of various factors [10, 19, 20]. For effective analysis,
mathematical modeling plays a crucial role. Many mathematical models are formulated by researchers to estimate
disease transmission by calculating the rate of recovery, death rate, etc. [3, 5, 11, 16, 21]. The system of DE is
constructed to investigate the drift of the biological system. The epidemic modeling works with the classification of
population into several compartments that play distinct role in the transmission of disease [4].

The earliest approach in epidemic modeling was the well-known Mckendricks SIR model [7]. SIR types of models
have been extensively analyzed by researchers. Then various modifications were performed in this by adding additional
compartments such as exposed, quarantined, recovered, and vaccinated, etc. Different kernels were used with various
operators for the analysis of disease [14, 28]. For example, the SEIR and SEIRD models separate recovered and dead
individuals from the population [23, 24]. The age-based compartmental model was also developed for assessment of
COVID-19 [6, 15]. Later vaccinated and quarantined individuals also got separated from the population. In this
direction, Peng et al. [22] formulated the SEIQRD epidemic model but this model was not considering birth and
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death parameters. Authors in [17] modified the model by considering the effect of these two but they neglected the
deaths caused by COVID-19. Authors in [29] formulated the SEIQRD model by taking separate compartment for the
deaths caused by COVID-19 into consideration.

In this paper, our goal is to analyze the transmission behavior of COVID-19 by studying the SEIQRD model [8]
with a CFFD operator. To examine the prevalence of disease within the population, the basic reproduction number is
calculated and by making use of it sensitivity of parameters is also checked. The following is an outline of our study.
Section 2 contains some relevant definitions for our study. Section 3 presents the fractional order model consisting of
six equations. The existence and uniqueness of our fractional order SEIQRD model are proposed in section 4. Section
5 estimates the basic reproduction number by employing the next generation matrix approach and the sensitivity of
model parameters is performed. Section 6 provides the numerical approximation scheme of CFFD. The numerical
simulation and discussion are provided in section 7. The conclusions of our study are given in section 8.

2. Mathematical Preliminaries

This section of article will cover fundamental definitions of a fractional order Caputo and the Caputo Fabrizio
operator.

Definition 2.1. [13] Let φ ∈ (0, 1) then the fractional Caputo derivative of order φ is expressed as:

CDφ
t f(t) =

1

Γ(φ)

∫ t

0

G(λ, f(λ))(t− λ)φ−1dλ.

Definition 2.2. [9] Let φ ∈ (0, 1) then the CFFD with order φ for the function f is given by,

CFDφ
t f(t) =

φM(φ)

(1− φ)

∫ t

a

df(x)

dx
exp

[
− φ t− x

1− φ

]
dx,

here M(φ) is a normalization constant. M(0)=M(1)=1.

Definition 2.3. [9] Let φ ∈ (0, 1) then the Caputo Fabrizio Fractional Integral having order φ for the function f is
defined by,

CFIφt f(t) =
2(1− φ)

(2− φ)(M(φ))
f(t) +

2φ

(2− φ)M(φ)

∫ t

0

f(s)ds,

here M(φ) is a normalization constant. M(0)=M(1)=1.

Lemma 2.4. For 0 < φ ≤ 1, the relation between CFFD and the corresponding integral is given by

(CFIφt )(CFDφ
t )f(t) = f(t)− f(a)

Lemma 2.5. [27] Let %(θ) ∈ C([0, T ]),then the solution of the following CFFD equation

CF
0D

φ(θ)
θ %(θ) = ω(θ), θ ∈ [0, T ], 0 < φ(θ) ≤ 1,

%(0) = ω0, ω0 ∈ R,

is given by

%(θ) = ω0 +
(1− φ(θ))

M(φ(θ))
ω0 +

φ(θ)

M(φ(θ)

∫ θ

0

ω(a)da.
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Figure 1. Schematic diagram of the SEIQRD model.

3. Mathematical Model

In this article, we present a SEIQRD model by envisioning the model formulated in [8]. Later we transform our
model into fractional order, so that classical mathematical model can be precised on an upper level which is required
to analyze this kind of illness. The integer order nonlinear model transmission is as follows.

Figure 1 depicts the schematic diagram of the SEIQRD model. In our presented model, the entire population is
categorized into six classes namely: Susceptible humans (S), Exposed humans (E), Infected humans (I), Quarantined
humans (Q), Recovered humans (R), and Dead humans (D). At rate λ, susceptible people are recruiting into the
population, α and β are the progression rates by which individuals are moving from susceptible to exposed and from
exposed to infected classes respectively. ξ is the rate by which infected people are getting recovered. Some of the
infected people are moving to quarantine class by rate ν. µ is natural death rate and the disease induced death rate
from infected and quarantined class is depicted by τ and δ respectively.

dS(t)

dt
= λ− αS(t)I(t)

T (t)
− µS(t),

dE(t)

dt
=
αS(t)I(t)

T (t)
− (µ+ β)E(t),

dI(t)

dt
= βE(t)− (ξ + ν + µ+ τ)I(t),

dQ(t)

dt
= νI(t)− (θ + µ+ δ)Q(t), (3.1)

dR(t)

dt
= ξI(t) + θQ(t)− µR(t),

dD(t)

dt
= δQ(t) + τI(t).

Then, the entire population T(t) at time t i.e.

T (t) = S(t) + E(t) + I(t) +Q(t) +R(t) +D(t).

The specifications of parameters for our model are explained in the Table 1 and their values are taken from [8].
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Table 1. Parameters denotations and values.

Parameter Description Value
λ Transmission rate 3.52
α Rate of infection 1.7
β Progression rate 0.052
ν Rate of quarantine 2
ξ Recovery rate of infected 0.041
τ Disease induced mortality rate 0.2
θ Rate of recovery of quarantined people 0.041
δ Death rate of quarantined individuals induced by disease 0.2
µ Natural death rate 0.0001

The term αS(t)I(t) indicates the density of Susceptible individuals who have been infected (not infectious). Here,
it is assumed that after being isolated, these people do not infect other people. Now, we take forward this model from
the integer order to the fractional order via CFFD.

CFDφ
t S(t) = λ− αS(t)I(t

T (t)
− µS(t),

CFDφ
t E(t) =

αS(t)I(t)

T (t)
− (µ+ β)E(t),

CFDφ
t I(t) = βE(t)− (ξ + ν + µ+ τ)I(t),

CFDφ
t Q(t) = νI(t)− (θ + µ+ δ)Q(t),

CFDφ
t R(t) = ξI(t) + θQ(t)− µR(t),

CFDφ
t D(t) = δQ(t) + τI(t).

(3.2)

with positive initial conditions,

S0 > 0, E0 > 0, I0 > 0, Q0 > 0, R0 > 0, D0 > 0.

Here, φ is the fractional order of Caputo Fabrizio Fractional operator and also, φ ∈ (0, 1].

4. The Existence and Uniqueness

We will conduct a qualitative analysis of model (3.2) in this part of our study. To check that our modeled problem
is posed well and has unique solution, we will employ the well-known Banach contraction theorem of fixed point theory
[1, 26]. For this, first we let the vector (S,E, I,Q,R,D) = ζ(t). We apply the Picard’s Operator approach to our
considered model (3.2). Let’s define the function as follows:

f1(t, ζ(t)) = λ− αS(t)I(t)

T (t)
− µS(t),

f2(t, ζ(t)) =
αS(t)I(t)

T (t)
− (β + µ)E(t),

f3(t, ζ(t)) = βE(t)− (ξ + ν + τ + µ)I(t),

f4(t, ζ(t)) = νI(t)− (θ + δ + µ)Q(t),

f5(t, ζ(t)) = ξI(t) + θQ(t)− µR(t),

f6(t, ζ(t)) = δQ(t) + τI(t).

(4.1)
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Now,

δj = sup
C∈[m,bi]

‖f1(t, ζ(t))‖ for j = 1, 2, 3, 4, 5, 6. (4.2)

C ∈ [m, bi] = [t−m, t+m]× [u− cj , u+ cj ] = Z × Zj for j = 1, 2, 3, 4, 5, 6. (4.3)

Now, by applying the Banach fixed point theorem, we express the norm on C ∈ [m, bi] for j=1,2,· · · 6 as follows

‖V ‖∞= sup
t∈[t−m,t+m]

|φ(t)|. (4.4)

We define the Picard’s operator as

P : C(Z,Z1, Z2, Z3, Z4, Z5, Z6) −→ C(Z,Z1, Z2, Z3, Z4, Z5, Z6).

Applying the Caputo Fabrizio integral i.e. CF Iφ on the model equations, we get

S(t)− S0 = CF
0I
φ
t [f1(t, ζ(t))],

E(t)− E0 = CF
0I
φ
t [f2(t, ζ(t))],

I(t)− I0 = CF
0I
φ
t [f3(t, ζ(t))],

Q(t)−Q0 = CF
0I
φ
t [f4(t, ζ(t))],

R(t)−R0 = CF
0I
φ
t [f5(t, ζ(t))],

D(t)−D0 = CF
0I
φ
t [f6(t, ζ(t))].

(4.5)

Solving the right hand side of Equation (4.5) by using Lemma 2.5, we get

V (t) = V0(t) + [Ξ(t, V (t))− Ξ(t)]
1− φ
M(φ)

+
1− φ
M(φ)

∫ t

0

Ξ(ρ, V (ρ))dρ, (4.6)

where, V (t) = (S,E, I,Q,R,D)T and V0(t) = (S0, E0, I0, Q0, R0, D0)T .

Ξ(t, V (t)) =



f1(t, ζ(t)),

f2(t, ζ(t)),

f3(t, ζ(t)),

f4(t, ζ(t)),

f5(t, ζ(t)),

f6(t, ζ(t)),

(4.7)

and

Ξ0(t, V (t)) =



f1(0, ζ0(t)),

f2(0, ζ0(t)),

f3(0, ζ0(t)),

f4(0, ζ0(t)),

f5(0, ζ0(t)),

f6(0, ζ0(t)).

(4.8)

So, the Picard’s operator takes the form as

PV (t) = V0(t) + [Ξ(t, V (t))− Ξ0(t, V (t))]
1− φ
M(φ)

+
1− φ
M(φ)

∫ t

0

Ξ(ρ, V (ρ))dρ. (4.9)
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We assume that ‖V ‖∞ ≤ max{k1, k2, k3, k4, k5, k6}. Then considering ∆ = max{∆j} for j=1,2,· · · ,6 and t0 =
max{t ∈ D} we get,

‖PV (t)− V0(t)‖ = ‖[Ξ(t, V (t))− Ξ0(t, V (t))]
1− φ
M(φ)

+
1− φ
M(φ)

∫ t

0

Ξ(ρ, V (ρ))dρ‖

≤ 1− φ
M(φ)

‖Ξ(t, V (t)||+ φ

M(φ)

∫ t

0

‖Ξρ, V (ρ)||dρ

≤ 1− φ
M(φ)

∆ +
φ

M(φ)
∆t

≤ ∆k ≤ max{k1, k2, k3, k4, k5, k6} = k̄.

(4.10)

and also, k ≤ k̄
∆ .

Moreover, to evaluate inequality,

‖PV1(t)−PV2(t)‖∞ = sup
t∈Z
‖V1(t)− V2(t)‖,

‖PV1(t)−PV2(t)‖ =

∣∣∣∣∣∣∣∣ 1− φM(φ)
(Ξ(ρ, V1(t))− Ξ(ρ, V2(t))) +

φ

M(φ)

∫ t

0

(Ξ(ρ, V1(ρ)− Ξ(ρ, V2(ρ))dρ

∣∣∣∣∣∣∣∣,
≤ 1− φ
M(φ)

l‖V1(t)− V2(t)‖+ sl

M(s)

∫ t

0

‖V1(t)− V2(t)‖

with l = sup
t∈Z

Ξ(t, V1(t)) and also, l < 1,

≤
(

1− φ
M(φ)

l +
φt0
M(φ)

l

)
‖V1(t)− V2(t)‖

≤ kl‖V1(t)− V2(t)‖.

(4.11)

For P to be contracted, kl should be less than 1. So, the defined operator P is contracted. Consequently our system
has the unique solution.

5. Reproduction Number and Sensitivity Analysis

5.1. Reproduction Number. The number of secondary cases transmitted by one infected individual is called Re-
production number (R0). R0 helps to analyze the effort which is required to eradicate the disease from the population.
In this part, we find the disease-free equilibrium (DFE) point and R0 by employing next generation matrix approach.
By DFE we refer to the situation where disease no longer remains in the population i.e. E = I = Q = R = D = 0.
Hence DFE is given by

χ0 = (S0, E0, I0, Q0, R0, D0) =
(λ
µ
, 0, 0, 0, 0, 0

)
.

To calculate R0, the considered system is

CFDφ
t ζ(t) = F (ζ(t))− V (ζ(t)),

here,

F (ζ(t)) =

αSI
T
0
0

 , and V (ζ(t)) =

 (β + µ)E
−βE + (ξ + ν + µ+ τ)I
−νI + (δ + µ+ θ)Q

 .

At χ0 the Jacobian matrices of F and V are
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Figure 2. Sensitivity indices of parameters.

JF =

0 α 0
0 0 0
0 0 0

 .and, JV =

β + µ 0 0
−β (ξ + µ+ τ + ν) 0
0 0 (θ + δ + µ)

 .

Now the next generation matrix FV −1 is given by,

FV −1 =

 αβ
(β+µ)(ξ+µ+τ+ν)

α
(ξ+µ+τ+ν) 0

0 0 0
0 0 0

 . (5.1)

The maximum of the absolute values of the eigenvalues of (5.1) is our required R0. So,

R0 =
αβ

(β + µ)(ξ + ν + τ + µ)
. (5.2)

5.2. Sensitivity Analysis. By sensitivity analysis, we can tell about the most critical parameter of our model which
has substantial influence in disease transmission. By doing so, we are able to find that which parameter has a high
impact on R0. The sensitivity indices are very useful to estimate the variation in the state variable caused by the
parameter change. The parameter values are used to calculate a sensitivity index. The sensitivity index could be both
positive or negative. A positive sensitive index implies that disease will spread on increase of the respective parameter.
The normalized forward sensitivity index of R0 for the parameter φ is given by [25]

SR0

φ =
∂R0

∂φ
× φ

R0
.

So, by using the above formula, we get

SR0
α =

β

(µ+ β)(ξ + ν + τ + µ)
× α

R0
= 1,

SR0

β =
αµ

(µ+ β)2(ξ + ν + τ + µ)
× β

R0
=

µ

(µ+ β)
,
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Table 2. Parameters versus Sensitivity indices.

Parameter Sensitivity index
α 1
β 0.001919
µ -0.000102
ξ -0.018294
ν -0.892418
τ -0.892418

SR0
µ =

−αβ(ξ + ν + τ + 2µ+ β)

(µ+ β)2(ξ + ν + τ + µ)2
× µ

R0
=
−µ(ξ + ν + τ + 2µ+ β)

ξ + ν + τ + µ
,

SR0

ξ =
−αβ

(µ+ β)(ξ + ν + τ + µ)2
× ξ

R0
=

−ξ
(ξ + ν + τ + µ)

,

SR0
ν =

−αβ
(µ+ β)(ξ + ν + τ + µ)2

× ν

R0
=

−ν
(ξ + ν + τ + µ)

,

SR0
τ =

−αβ
(µ+ β)(ξ + µ+ τ + ν)2

× τ

R0
=

−τ
(ξ + ν + τ + µ)

.

By putting the parameters values from the Table 1 we get the following Sensitivity indices given in Table 2.

6. Numerical Simulation

This section of our study is specified to verify our findings by numerical simulation of the presented model. The
parameters used in simulations are provided in Table 1. The initial populations in each compartment of the model is
given as S0 = 38000, E0 = 2000, I0 = 1000, Q0 = 3000, R0 = 50, D0 = 1000 [8]. The total population of Indonesia is
= 280000000. We simulate six categories of the model by using two step Adams-Bashforth approach via CFFD. By
the graphs, we can observe that dynamics of disease transmission can be better depicted by fractional orders rather
than integer ones.

Figure 3 represents the dynamics of Susceptible individuals. It is observed that Susceptible are decreasing as the
people in this class are adhere to prevent disease by getting quarantined. we can see that as we are decreasing the
fractional order, number of susceptible are increasing. This means that number of susceptible is inversely proportional
to fractional order.

Figure 4 represents the behavior of Exposed individuals which shows that by the passage of time the number of
people who are moving into Exposed class decreases. This class is also inversely proportional to fractional order.

Figure 5 is the representation of Infected individuals. It shows that initially this class attains its maximum value
then decreases very rapidly. Figure 6 represents Quarantined class. Similar to Infected, this class also decreases very
rapidly. The dynamics of both Infected and Quarantined individuals depicts that they are inversely proportional to
fractional order.

Figure 7 depicts the individuals who get recovered from the disease. It increases for almost 70 days then attains
the stability. Figure 8 shows the dynamics of dead individuals varying with time. After two months dead population
is converging towards stability. The number of deaths are in proportion to the fractional order.

7. Conclusions

The present study examines the SEIQRD epidemic model, employing the CFFD in simulating the spread of the
COVID-19 pandemic. At first some fundamental definitions of fractional calculus which are being used in this analysis
are given. The existence and uniqueness for the model have been proved by applying the Banach contraction theorem.
This shows that the model is biologically stable. The widely utilized next generation matrix approach has been
employed in determining the R0 of the suggested model. This depicts the pandemic’s potential behavior. The key
parameters which highly impact the dynamics of COVID-19 are also investigated by performing sensitivity analysis.
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Figure 3. Susceptible indi-
viduals versus time.
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als versus time.
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Figure 5. Infected Individu-
als versus time.
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Figure 6. Quarantined Indi-
viduals versus time.
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Figure 7. Recovered Individ-
uals versus time.

0 100 200 300 400

Time(t)

1000

1500

2000

2500

3000

3500

4000

4500

D
e

a
d

 I
n

d
iv

id
u

a
ls

 = 1

 = 0.85

 = 0.7

 = 0.55

Figure 8. Dead Individuals
versus time.



REFERENCES 503

We observed that the rate of infection is the most sensitive parameter while the incubation rate does not impact
remarkably. The remaining parameters are negatively impacting R0 i.e. on increasing the values of these parameters,
R0 decreases.

The numerical scheme for the fractional order Caputo Fabrizio derivative has been provided by using the two-step
Adams-Bashforth technique. The numerical simulation has been done using MATLAB software. Numerical results
are produced for various values of fractional orders to countenance the importance of fractional order over integer
order. The graphs provide the required information about the model’s behavior and feasibility. It is observed that
Quarantine plays an effective and positive role in eradicating the infection of COVID-19.
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