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Abstract
This manuscript provides an efficient technique for solving time-fractional diffusion-wave equations using general
Lagrange scaling functions (GLSFs). In GLSFs, by selecting various nodes of Lagrange polynomials, we get

various kinds of orthogonal or non-orthogonal Lagrange scaling functions. The general Riemann-Liouville fractional

integral operator (GRLFIO) of GLSFs is obtained generally. General Riemann-Liouville fractional integral operator
of the general Lagrange scaling function is calculated exactly using the Hypergeometric functions. The operator

extraction method is precisely calculated and this has a direct impact on the accuracy of our method. The
operator and optimization method are implemented to convert the problem to a set of algebraic equations. Also,

error analysis is discussed. To demonstrate the efficiency of the numerical scheme, some numerical examples are

examined.

Keywords. Time-fractional diffusion-wave equation, General Riemann-Liouville pseudo-operational matrix, Optimization method, General La-

grange scaling function.
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1. Introduction

Application in mathematical modeling of anomalous diffusive systems, description of fractional random walk, uni-
fication of diffusion and wave propagation phenomenon [11, 16] is a part of wide usage anomalous diffusion equations.

One of the most important of these kinds of equations is the fractional diffusion-wave equation (FD-WEs). FD-WE
indicates the duality behavior of wave and diffusion equations to a local disturbance.

The universal electromagnetic, acoustic, electrical network, signal processing, and mechanical responses may be
modeled accurately utilizing time-FD-WEs (TFDWEs) [14].

Also, finding an analytical solution of fractional diffusion-wave equations is difficult, then developing numerical
algorithms to solve them is of great importance. Several numerical techniques are proposed to solve these equations
such as a combination method via the difference method and Galerkin spectral method [4], a spectral tau method
[2], a meshless method [3], the Galerkin method using the second kind Chebyshev wavelets [24], local discontinuous
Galerkin method [12], the second kind Chebyshev polynomial method [13], the Quasi-Boundary value method [28],
the Galerkin finite element method [6], a pseudospectral Sinc method [26], fractional-order Bernoulli function method
[27], the Crank-Nicolson method [8], and so on.

A set of schemes to quantitatively analyze academic publications is named bibliometric [23]. Also, an important
role in creating effective science policies is empirical evaluations of scientific and technological research. Bibliometric
analysis is effective on factors that raise the contribution of research in a subject area and guides researchers to produce
effective investigations [1, 20].
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Figure 1. Annual number of publications per year in Scopus.

Table 1. The top 10 journals in the considered topic in Scopus.

Journals Number of publications

Fractional Calculus and Applied Analysis 12
Numerical Algorithms 10
Journal of Computational and Applied Mathematics 10
Computers & Mathematics with Applications 10
Applied Numerical Mathematics 9
Applied Mathematics and Computation 9
Mathematics 9
Journal of Computational Physics 8
Applied Mathematics Letters 8
Journal of Scientific Computing 6
International Journal of Computer Mathematics 6

For appraising the importance and impact of academic studies on the topic of TFDWEs, here, we present a brief
bibliometric analysis to display the state of publication in a valid database, Scopus. For this purpose, we consider
the following keyword on 22nd October 2023. Brief considered Keyword: ”fractional diffusion*wave equation*” OR
”fractional*order diffusion*wave equation*” OR ”time*fractional diffusion*wave equation*” OR ”time-fractional-order
diffusion*wave equation*” The search of the considered keyword at the title in Scopus concluded ”249” publications.
The annual number of publications in Scopus is shown in Figure 1. As for journals, ”Fractional Calculus and Applied
Analysis” is the most prolific journal in Scopus. The top 10 journals are tabulated in Table 1.

Most of the publications are written in English, however, one output is in Chinese and Russian. Of the 164 authors
that are found on analyzing, the most prolific author is found to be ”T. Wei” with 17 publications. Also, the value of
”Authors per document” is 1.66, and the ”Collaboration Index” is 1.92. The newest keywords that appear in Scopus
outputs, are displayed in the visualization map (See Figure 2).
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Figure 2. Visualization map of co-occurring keywords over time in the considered study in Scopus.

In this figure, the color of a keyword indicates the average year in which documents that include the term appeared.
Top occurrence keywords include ”fractional diffusion-wave equation”, ”stability”, ”diffusion-wave equation”, ”Caputo
derivative”, and ”convergence”. Finally, due to the present discussion, a novel approximation scheme is suggested for
finding an approximate solution to TFDWEs. Currently, the following TFDWE is suggested with initial and boundary
conditions [29]:

Dν
t U(x, t) +DtU(x, t) = D2

xU(x, t) +Q(x, t), 0 ≤ x, t ≤ 1, 1 < ν ≤ 2, (1.1)

{
U(x, 0) = µ0(x),

Ut(x, 0) = µ1(x), 0 ≤ x ≤ 1,
(1.2)

and {
U(0, t) = ξ0(t),

U(1, t) = ξ1(t), 0 ≤ t ≤ 1.
(1.3)

where, µ0(x), µ1(x), ξ0(t) and ξ1(t) are given functions, and U(x, t) is an unknown function. Also, Dν
t denotes the

Caputo derivative of order 1 < ν ≤ 2 relative to variable t which is recalled in [21, 22].
On the other hand, for some decades, wavelets are powerful and efficient mathematical tools for designing the

numerical method for solving some different kinds of fractional equations, such as Fibonacci [20], Boubaker [18], Mott
[17], Touchard [15], the second kind Chebyshev [24] wavelets, etc.

Recently in [21, 22], we introduced fractional-order Lagrange polynomials and fractional-order general Lagrange
scaling functions and applied these new functions to solve the fractional differential equations and the authors showed
these functions are proper for the approximation of smooth and non-smooth functions.

The outline of the rest of the manuscript is organized as follows. Section 2 contains a summary of some definitions
that are needed in this work and we present two-dimensional GLSFs. Section 3 is devoted to a new general Riemann-
Liouville fractional integral operator for the GLSFs. The GRLFIO is derived generally. Section 4 develops an efficient
numerical method for solving TFDWEs. Section 5 analyses the approximation using GLSFs. The numerical results
are carried out in section 6. Finally, the conclusion is included in section 7.
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2. Preliminaries

Here, some of the necessary definitions are recalled.

Definition 2.1. The RLFIO of order ν ≥ 0 of f : [0, b]→ R is defined as [21]

Iνu(t) =

{
1

Γ(ν)

∫ t
0
u(s)(t− s)ν−1ds, ν > 0, t > 0,

u(t), ν = 0.
(2.1)

Also, we have the following property.

Iνtk =

{
Γ(k+1)

Γ(k+ν+1) t
k+ν , k > −1,

0, otherwise.
(2.2)

Definition 2.2. Hypergeometric function 2F1 (a, b, c; z) for |z| < 1 is defined as [19]

2F1 (a, b, c; z) =

∞∑
i=0

(a)i (b)i
(c)i

· z
i

i!
, (2.3)

in which

(q)i =

{
1, if i = 0,
q (q + 1) · · · (q + i− 1) , if i > 0,

and, a, b, c, z are real numbers. Also, we have

2F1 (a, b, c; z) =
Γ(c)

Γ(b)Γ(c− b)

∫ 1

0

tb−1 (1− t)c−b−1
(1− zt)−a dt,

that is the integral form of the hypergeometric function [19].

Lemma 2.3. Considering 2F1 as the hypergeometric function, we get [19]

Iγ (trχc (t)) =

{
Γ(r+1)tr+γ

Γ(r+γ+1) −
tγ−1cr+1

Γ(γ)(r+1) 2F1

(
1− γ, r + 1, r + 2; ct

)
, t ≥ c,

0, t < c,
(2.4)

subject to χc is the unit step function.

2.1. GLSFs. We consider nodal points xi, i = 0, 1, . . . , n. For any fixed non-negative integer number n, the Lagrange
interpolating polynomials are defined in the following form [22]:

Li(x) :=

n∏
j = 0
j 6= i

(x− xj)
(xi − xj)

. (2.5)

Moreover, there are no explicit formulas for the specified points xi.
Authors [22] proposed another representation of these polynomials as follows:

Li(x) =

n∑
s=0

ζisx
n−s, i = 0, 1, . . . , n, (2.6)

where

ζi0 =
1∏n

j = 0
j 6= i

(xi − xj)
,



454 S. SABERMAHANI, Y. ORDOKHANI, AND P. AGARWAL

ζis =
(−1)s∏n

j = 0
j 6= i

(xi − xj)

n∑
ks=ks−1+1

. . .

n−s+1∑
k1=0

s∏
r=1

xkr ,

and i 6= k1 6= . . . 6= ks, s = 1, 2, . . . , n.

Lemma 2.4. The following feature is established for the Lagrange polynomials [21]

∫ 1

0

Lm(x)Lm′(x)dx =

n∑
s1=0

n∑
s2=0

ζms1ζm′s2
2n− s1 − s2 + 1

. (2.7)

GLSFs are defined as the following formula [21]:

ψn,m(x) =

{
2
K−1

2 L̃m(2K−1x− n+ 1), n−1
2K−1 ≤ x < n

2K−1 ,
0, otherwise,

(2.8)

and

L̃m(x) =
1
√
ωm
Lm(x), (2.9)

which, n = 1, 2, . . . , 2K−1, m = 0, 1, . . . ,M− 1 and ωm are determined using Eq. (2.7), when m′ = m.
If we consider the nodal points (xm,m = 0, 1, . . . ,M−1) as the roots of Legendre polynomials, we have interpolation

scaling function [7].
The two-dimensional GLSFs (2D-GLSFs) are introduced on the region [0, 1)× [0, 1) as the following form

ψn1,m1,n2,m2
(x, t) = ψn1,m1

(x)ψn2,m2
(t) (2.10)

=


2
K1+K2−2

2 L̃m1
(2K1−1x− n1 + 1)L̃m2

(2K2−1t− n2 + 1), x ∈ [ n1−1
2K1−1 ,

n1

2K1−1 ),

t ∈ [ n2−1
2K2−1 ,

n2

2K2−1 ),

0, otherwise.

2.1.1. Approximation based on GLSFs. The approximation for an arbitrary function u(x) on [0, 1) can be presented
utilizing GLSFs as

u(x) '
2K−1∑
n=1

M−1∑
m=0

ũn,mψn,m(x) = ŨTΨMK (x). (2.11)

We obtain the coefficient vector Ũ in the following way

Ũ = D−1〈u(x),ΨMK (x)〉, D = 〈ΨMK (x),ΨMK (x)〉, (2.12)

in which

Ũ = [ũ1,0, ũ1,1, · · · , ũ1,M−1, ũ2,0, · · · , ũ2,M−1, · · · , ũ2K−1,M−1]T , (2.13)

ΨMK (x) = [ψ1,0, ψ1,1, · · · , ψ1,M−1, ψ2,0, · · · , ψ2,M−1, · · · , ψ2K−1,M−1]T .
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Let u(x, t) is an arbitrary function in L2([0, 1)× [0, 1)). We can express this function as follows

u(x, t) '
2K1−1∑
n1=1

M1−1∑
m1=0

2K2−1∑
n2=1

M2−1∑
m2=0

un1,m1,n2,m2ψn1,m1,n2,m2(x, t) = ΨM1T
K1

(x)UΨM2

K2
(t), (2.14)

we derive the coefficient matrix U as follows

U = D̃−1〈〈u(x, t),ΨM1

K1
(x)〉ΨM2

K2
(t)〉D̂−1, (2.15)

D̃ = 〈ΨM1

K1
(x),ΨM1

K1
(x)〉, D̂ = 〈ΨM2

K2
(t),ΨM2

K2
(t)〉.

3. General Riemann-Liouville fractional integral operator of GLSFs

In the current part, we present a GRLFIO of GLSFs regardless the nodal points for Lagrange polynomials. We
extract formula for computing the GRLFIO for GLSFs in the following form

IνΨMK (x) = Ψ̃MK (x, ν). (3.1)

We derive the components of Ψ̃(x, γ). For this aim, according to Eqs. (2.6), (2.8), and binomial expansion, GLSFs
can expanded in the following form

ψn,m(x) =
2
K−1

2

√
wm

χ( n−1

2K−1 )(x)Lm(2K−1x− n+ 1)− 2
K−1

2

√
wm

χ( n

2K−1 )(x)Lm(2K−1x− n+ 1). (3.2)

By applying the Riemann-Liouville integral operator (Iν) on both sides of Eq. (3.2), we get

Iν (ψn,m(x)) = Iν

(
2
K−1

2

√
wm

χ( n−1

2K−1 )(x)Lm(2K−1x− n+ 1)

)
− Iν

(
2
K−1

2

√
wm

χ( n

2K−1 )(x)Lm(2K−1x− n+ 1)

)
. (3.3)

Then, we get

Lm(2K−1x− n+ 1) =

M−1∑
s=0

ζms(2
K−1x− n+ 1)M−1−s (3.4)

=

M−1∑
s=0

M−1−s∑
i=0

ζms(1− n)M−1−s−i(2K−1)ixi,

so, Eq. (3.3) can be rewritten as

Iν (ψn,m(x)) =
2
K−1

2

√
wm

M−1∑
s=0

M−1−s∑
i=0

ζms(1− n)M−1−s−i(2K−1)i

×
(
Iγ(χ( n−1

2K−1 )(x)xi)− Iγ(χ( n

2K−1 )(x)xi)
)
.

Thus, due to Lemma 2.4 and the above discussion, we achieve

Iν (ψn,m(x)) =



0, x ∈
[
0,
(
n−1
2K−1

))
,

θ(x), t ∈
[(

n−1
2K−1

)
,
(

n
2K−1

))
,

θ(x)− θ̃(x), x ∈
[(

n
2K−1

)
, 1
)
,

(3.5)
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where

θ(t) =
2
K−1

2

√
wm

M−1∑
s=0

M−1−s∑
i=0

ζms(1− n)M−1−s−i(2K−1)i

×
[
xi+ν

Γ (i+ 1)

Γ (i+ ν + 1)
− xν−1

Γ (ν) (i+ 1)

(
n− 1

2K−1

)(i+1)

2F1

(
1− ν, i+ 1, i+ 2;x

(
n− 1

2K−1

))]
,

and

θ̃(t) =
2
K−1

2

√
wm

M−1∑
s=0

M−1−s∑
i=0

ζms(1− n)M−1−s−i(2K−1)i

×
[
xi+ν

Γ (i+ 1)

Γ (i+ ν + 1)
− xν−1

Γ (ν) (i+ 1)

( n

2K−1

)(i+1)

2F1

(
1− ν, i+ 1, i+ 2;x

( n

2K−1

))]
.

Thus, due to Eq. (3.5), we achieve GRLFIO in Eq. (3.1).

4. Description of the numerical method

For finding solution of the mentioned problem in Eqs. (1.1)-(1.3), we expand ∂4U(x,t)
∂x2∂t2 in terms of GLSFs as

∂4U(x, t)

∂x2∂t2
' ΨM1T

K1
(x)UΨM2

K2
(t). (4.1)

Due to the initial conditions (given in Eq. (1.2)) and by integrating two times with respect to t on both sides of
the above equation, we derive

∂2U(x, t)

∂x2
' ΨM1T

K1
(x)UΨ̃M2

K2
(t, 2) + µ

′′

0 (x) + tµ
′′

1 (x), (4.2)

and then by integrating one and two times with respect to x, we get the following relations.

∂U(x, t)

∂x
' Ψ̃M1T

K1
(x, 1)UΨ̃M2

K2
(t, 2) + [µ

′

0(x)− µ
′

0(0)] + t[µ
′

1(x)− µ
′

1(0)] +
∂U(x, t)

∂x

∣∣∣∣
x=0

, (4.3)

and

U(x, t) ' Ψ̃M1T
K1

(x, 2)UΨ̃M2

K2
(t, 2) + [µ0(x)− µ0(0)− xµ

′

0(0)]

+ t[µ1(x)− µ1(0)− xµ
′

1(0)] + x
∂U(x, t)

∂x

∣∣∣∣
x=0

+ξ0(t), (4.4)

where ∂U(x,t)
∂x

∣∣∣∣
x=0

is unknown. According to Eq. (1.3), and by integrating Eq. (4.3) with respect to x from 0 to 1, we

can compute the unknown term.

ξ1(t)− ξ0(t) '
(∫ 1

0

Ψ̃M1T
K1

(x, 1)dx

)
UΨ̃M2

K2
(t, 2) +

∫ 1

0

[µ
′

0(x)− µ
′

0(0)]dx

+ t

∫ 1

0

[µ
′

1(x)− µ
′

1(0)]dx+
∂U(x, t)

∂x

∣∣∣∣
x=0

(4.5)

=

(∫ 1

0

Ψ̃M1T
K1

(x, 1)dx

)
UΨ̃M2

K2
(t, 2) + [µ0(1)− µ0(0)− µ

′

0(0)]

+ t[µ1(1)− µ1(0)− µ
′

1(0)] +
∂U(x, t)

∂x

∣∣∣∣
x=0

,

then, we get



CMDE Vol. 13, No. 2, 2025, pp. 450-465 457

∂U(x, t)

∂x

∣∣∣∣
x=0

' ξ1(t)− ξ0(t)−
(∫ 1

0

Ψ̃M1T
K1

(x, 1)dx

)
UΨ̃M2

K2
(t, 2)

− [µ0(1)− µ0(0)− µ
′

0(0)]− t[µ1(1)− µ1(0)− µ
′

1(0)]. (4.6)

For calculate the terms ∂U(x,t)
∂t and ∂νU(x,t)

∂tν , by deviating of order 1 and ν on both sides of Eq. (4.4) with respect
to t, we derive the following relations, respectively:

∂U(x, t)

∂t
' Ψ̃M1T

K1
(x, 2)UΨ̃M2

K2
(t, 1) + [µ1(x)− µ1(0)− xµ

′

1(0)] + x
∂

∂t

(
∂U(x, t)

∂x

∣∣∣∣
x=0

)
+ξ
′

0(t), (4.7)

and

∂νU(x, t)

∂tν
' Ψ̃M1T

K1
(x, 2)UΨ̃M2

K2
(t, 2− ν) + x

∂ν

∂tν

(
∂U(x, t)

∂x

∣∣∣∣
x=0

)
+ξ

(ν)
0 (t), (4.8)

where

∂

∂t

(
∂U(x, t)

∂x

∣∣∣∣
x=0

)
' ξ

′

1(t)− ξ
′

0(t)−
(∫ 1

0

Ψ̃M1T
K1

(x, 1)dx

)
UΨ̃M2

K2
(t, 1)− [µ1(1)− µ1(0)− µ

′

1(0)],

and

∂ν

∂tν

(
∂U(x, t)

∂x

∣∣∣∣
x=0

)
' ξ(ν)

1 (t)− ξ(ν)
0 (t)−

(∫ 1

0

Ψ̃M1T
K1

(x, 1)dx

)
UΨ̃M2

K2
(t, 2− ν).

At last, by substituting Eqs. (4.1)-(4.8) in the considered problem in Eqs. (1.1)-(1.3), we construct J (x, t, U)

J (x, t, U) :=

[
Ψ̃M1T
K1

(x, 2)UΨ̃M2

K2
(t, 2− ν)

+ x
∂ν

∂tν

(
∂U(x, t)

∂x

∣∣∣∣
x=0

)
+ξ

(ν)
0 (t)

]
+

[
Ψ̃M1T
K1

(x, 2)UΨ̃M2

K2
(t, 1) + [µ1(x)− µ1(0)− xµ

′

1(0)]

+ x
∂

∂t

(
∂U(x, t)

∂x

∣∣∣∣
x=0

)
+ξ
′

0(t)

]
−

[
ΨM1T
K1

(x)UΨ̃M2

K2
(t, 2) + µ

′′

0 (x) + tµ
′′

1 (x)

]
−Q(x, t).

Then, we consider functional J ∗, as follows

J ∗(U) := min

∫ 1

0

∫ 1

0

J 2(x, t, U)dxdt.

The necessary conditions of the aforesaid problem to minimize J ∗(U) and evaluate the optimal value of unknown
matrix U are

∂J ∗

∂U
= 0. (4.9)

As a result, by deriving the solution of the above system of algebraic equations using the ”Find Root” package in
the ”Mathematica software”, we compute the matrix U . Then, by inserting this into Eq. (4.4), U(x, t) is achieved.
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5. Error analysis

In this part, we propose the error bound of approximation using GLSFs and a bound of residual error of the
mentioned problem.

Theorem 5.1. Assume that Let UApp(x, t) be the GLSFs expansion of the real sufficiently smooth function U(x, t) on
the region ∆ = [0, 1)× [0, 1) and UApp is the best approximation of U . So, the following relation shows the error bound
of the approximate solution derived by GLSFs:

‖U(x, t)− UApp(x, t)‖L2(∆) ≤
1

M1!M2!
√

2M1 + 1
√

2M2 + 1
qM1

M2
, (5.1)

subject to qM1

M2
≥ sup(x,t)∈∆ |Di

xD
j
tU(x, t)|.

Proof. Suppose that Di
xD

j
tU ∈ C(∆), i = 0, 1, · · · ,M1, j = 0, 1, · · · ,M2, multi-variable Taylor formula is as

UM1

M2
(x, t) =

M1−1∑
i=0

M2−1∑
j=0

xitj

i!j!
Di
xD

j
tU(x, t)

∣∣∣∣
(0,0)

,

then, we have

|U(x, t)− UM1

M2
(x, t)| ≤ xM1tM2

M1!M2!
sup

(x,t)∈∆

|Di
xD

j
tU(x, t)|. (5.2)

Now, we assume Ũ(x, t) denotes the approximate of U(x, t) using Lagrange polynomials on the region ∆̃ =
[ n1−1
2K1−1 ,

n1

2K1−1 )× [ n2−1
2K2−1 ,

n2

2K2−1 ). Herein, we have

‖U(x, t)− UApp(x, t)‖2L2(∆) = ‖U(x, t)−ΨM1T
K1

(x)UΨM2

K2
(t)‖2L2(∆)

=

2K1−1∑
n1=1

2K2−1∑
n2=1

‖U(x, t)− Ũ(x, t)‖2
L2(∆̃)

≤
2K1−1∑
n1=1

2K2−1∑
n2=1

‖U(x, t)− UM1

M2
(x, t)‖2

L2(∆̃)

≤
2K1−1∑
n1=1

2K2−1∑
n2=1

∫ n1

2K1−1

n1−1

2K1−1

∫ n2

2K2−1

n2−1

2K2−1

[
xM1tM2

M1!M2!
sup

(x,t)∈∆̃

|Di
xD

j
tU(x, t)|

]2

dxdt

≤
∫ 1

0

∫ 1

0

[
xM1tM2

M1!M2!
qM1

M2

]2

dxdt

=
1

(M1!)2(M2!)2(2M1 + 1)(2M2 + 1)
(qM1

M2
)2.

�

Due to Theorem 5.1, it can be seen that by increasing the terms of M1,M2, the approximation UApp converge to
the analytical solution.

Theorem 5.2. Let Dn
xUApp(x, t) is the best approximate of Dn

xU(x, t) on the region ∆. So the following relation
displays the error bound of derivative of the approximation for M1 > n:

‖Dn
xU(x, t)−Dn

xUApp(x, t)‖L2(∆) ≤
1

(M1 − n)!M2!
√

2M1 − 2n+ 1
√

2M2 + 1
qM1

M2
, (5.3)

where n = 1, 2, · · · .
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Proof. Given Eqs. (5.1) and (5.2), we get

‖Dn
xU(x, t)−Dn

xUApp(x, t)‖L2(∆) ≤
2K1−1∑
n1=1

2K2−1∑
n2=1

‖Dn
xU(x, t)−Dn

x Ũ(x, t)‖2
L2(∆̃)

≤
2K1−1∑
n1=1

2K2−1∑
n2=1

‖Dn
xU(x, t)−Dn

xU
M1

M2
(x, t)‖2

L2(∆̃)

≤
2K1−1∑
n1=1

2K2−1∑
n2=1

∫ n1

2K1−1

n1−1

2K1−1

∫ n2

2K2−1

n2−1

2K2−1

[
xM1−ntM2

(M1 − n)!M2!
sup

(x,t)∈∆̃

|Di
xD

j
tU(x, t)|

]2

dxdt

≤
∫ 1

0

∫ 1

0

[
xM1−ntM2

(M1 − n)!M2!
qM1

M2

]2

dxdt

=
1

((M1 − n)!M2!)2(2M1 − 2n+ 1)(2M2 + 1)
(qM1

M2
)2.

�

Corollary 5.3. Similar to Theorem 5.2, the error bound of derivative of the approximation Dn′

t U(x, t)−Dn′

t UApp(x, t)
for M2 > n′ is achieved as follows:

‖Dn′

t U(x, t)−Dn′

t UApp(x, t)‖L2(∆) ≤
1

M1!(M2 − n′)!
√

2M1 + 1
√

2M2 − 2n′ + 1
qM1

M2
, (5.4)

where n′ = 1, 2, · · · .

Theorem 5.4. Suppose that Dν
t UApp(x, t) is the best approximate of Dν

t U(x, t) on the region ∆. Then, the error
bound of derivative of the approximation of order 1 ≤ ν < 2, respect to t, is obtained

‖Dν
t U(x, t)−Dν

t UApp(x, t)‖L2(∆) ≤
1

M1!Γ(M2 + 1− ν)
√

2M1 + 1
√

2M2 − 2ν + 1
qM1

M2
. (5.5)

Proof. According to Eqs. (5.1) and (5.2), we get

‖Dν
t U(x, t)−Dν

t UApp(x, t)‖L2(∆) ≤
2K1−1∑
n1=1

2K2−1∑
n2=1

‖Dν
t U(x, t)−Dν

t Ũ(x, t)‖2
L2(∆̃)

≤
2K1−1∑
n1=1

2K2−1∑
n2=1

‖Dν
t U(x, t)−Dν

t U
M1

M2
(x, t)‖2

L2(∆̃)

≤
2K1−1∑
n1=1

2K2−1∑
n2=1

∫ n1

2K1−1

n1−1

2K1−1

∫ n2

2K2−1

n2−1

2K2−1

[
Γ(M2 + 1)xM1tM2−ν

Γ(M2 + 1− ν)M1!M2!
sup

(x,t)∈∆̃

|Di
xD

j
tU(x, t)|

]2

dxdt

≤
∫ 1

0

∫ 1

0

[
xM1tM2−ν

Γ(M2 + 1− ν)M1!
qM1

M2

]2

dxdt

=
1

(M1!Γ(M2 + 1− ν))2(2M1 + 1)(2M2 − 2ν + 1)
(qM1

M2
)2.

�

According to the aforesaid theorems, it can be observed that by increasing the terms of M1,M2, the error of
derivatives of the approximate solution tends to be zeros.
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Residual error. In this subsection, given Eq. (1.1), we present an upper bound of the residual error function. We
define

RM1

M2
(x, t) = E(x, t)− EApp(x, t),

in which

E(x, t) = Dν
t U(x, t) +DtU(x, t)−D2

xU(x, t)−Q(x, t),

and

EApp(x, t) = Dν
t UApp(x, t) +DtUApp(x, t)−D2

xUApp(x, t)−Q(x, t).

Then, using Theorems 5.1-5.4 and Corollary, we have

‖RM1

M2
(x, t)‖L2(∆) ≤ ‖Dν

t U(x, t)−Dν
t UApp(x, t)‖L2(∆)

+ ‖DtU(x, t)−DtUApp(x, t)‖L2(∆)

+ ‖D2
xU(x, t)−D2

xUApp(x, t)‖L2(∆)

≤ 1

M1!Γ(M2 + 1− ν)
√

2M1 + 1
√

2M2 − 2ν + 1
qM1

M2

+
1

M1!(M2 − 1)!
√

2M1 + 1
√

2M2 − 1
qM1

M2

+
1

(M1 − 2)!M2!
√

2M1 − 3
√

2M2 + 1
qM1

M2
.

6. Numerical results

In the current section, three examples are proposed to examine the accuracy of the numerical solution of the
mentioned problem by implementing the present technique. Moreover, the simulations are performed on a personal
computer via Mathematica 12.

Example 6.1. First, we consider the following TFDWE of order ν (1 < ν ≤ 2) with the initial and boundary
homogeneous conditions [29]

∂νU(x, t)

∂tν
+
∂U(x, t)

∂t
=
∂2U(x, t)

∂x2
+Q(x, t),

where Q(x, t) = ( 2t2−ν

Γ(3−ν) +2t)(x−x2)+2t2 is selected so that the exact solution is U(x, t) = t2x(1−x). The equation

has been solved with various values of K, K̃,M,M̃ and ν. The achieved results are shown in Table 2, Figures 3 and 4.
Figure 3 demonstrates the absolute error for K = K̃ = 1,M = M̃ = 1, ν = 2 and ν = 1.1. Also, Figure 4

shows the absolute error for K = K̃ = 2,M = M̃ = 2, ν = 1.5 when we select zeros of shifted Legendre polynomials
and i

M+1 ,
j

M̃+1
, i = 1, · · ·M, j = 1, · · · M̃ as nodal points. For more investigation, Table 2 presents a comparison

the absolute errors between the result derived by wavelet method with (k = 3,M = 3) [9] and our method with

K = K̃ = M = M̃ = 2 in zeros of Legendre polynomials as nodal points. In this table, we achieved more accurate
results than the wavelet method [9] with fewer basic functions.

Example 6.2. Consider the following TFDWE of order ν (1 < ν ≤ 2) [2]
∂νU(x,t)
∂tν + ∂U(x,t)

∂t = ∂2U(x,t)
∂x2 +Q(x, t),

U(x, 0) = ∂U(x,0)
∂t = 0, 0 ≤ x ≤ 1,

U(0, t) = t3, U(1, t) = Exp(1)t3, 0 ≤ t ≤ 1.
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Figure 3. Absolute error for K = K̃ =M = M̃ = 1, ν = 1.1 (left) and ν = 2 (right) in Example 6.1.

Figure 4. The bsolute error for K = K̃ = M = M̃ = 2, ν = 1.5 and with nodal points: zeros of
shifted Legendre polynomials (right) and i

M+1 ,
j

M̃+1
, i = 1, · · ·M, j = 1, · · · M̃ (left) in Example

6.1.

Table 2. The comparison of the absolute errors between the our method (K = K̃ = M = M̃ = 2)
and wavelets method (k = 3,M = 3) [9] for different values of ν in Example 6.1.

(x, t) Wavelets method [9] Present method
ν = 1.3 ν = 1.9 ν = 1.3 ν = 1.9

(0.1, 0.1) 1.3694E−5 1.2825E−5 4.33681E−19 8.02310E−18

(0.3, 0.3) 2.6323E−5 5.3169E−5 6.93889E−18 1.04083E−17

(0.5, 0.5) 1.8821E−5 6.7208E−5 9.71445E−17 6.93889E−18

(0.7, 0.7) 8.1172E−6 3.6814E−5 2.49800E−16 4.77396E−15

(0.9, 0.9) 3.1435E−6 1.2030E−5 6.52256E−16 1.11577E−14
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Table 3. The comparision of the maximum absolute errors in Example 6.2.

Method Error
FPCM [10] 2.76E−2

Spectral Tau method [2] (N = M = 8, α = β = 1) 2.64E−5

Spectral Tau method [2] (N = M = 16, α = β = 1) 1.25E−6

Present method (K = K̃ = 1,M = 5,M̃ = 2) 1.25E−7

Figure 5. The convergence of Example 6.2 at K = 3,M = 5, K̃ = 1,M̃ = 2, x = 1 and different
values of ν.

We select Q(x, t) so that the exact solution of this problem is U(x, t) = t3Exp(x). The comparison of maxi-
mum absolute errors obtained by implementing FPCM [10], spectral Tau method [2] and our method in nodal points
i

M+1 ,
j

M̃+1
, i = 1, · · ·M, j = 1, · · · M̃ are reported Table 3.

Figure 5 exhibits the convergence of the problem at K = 3,M = 5, K̃ = 1,M̃ = 2, x = 1 and different values of ν.

Example 6.3. Consider the following TFDWE of order ν (1 < ν ≤ 2) [5]

∂νU(x, t)

∂tν
=
∂2U(x, t)

∂x2
+ sin(πx), 0 ≤ x, t ≤ 1,

with the initial and boundary homogeneous conditions. U(x, t) = 1
π2 (1−Mν(−π2tν))sin(πx) is the exact solution, in

which Mν(t) denotes the Mittag-Leffler function.

Table 4 displays the achieved results by applying the method with K = K̃ = 1,M = M̃ = 5 and different values of ν
and comparing with the exact solution and compact difference method [5], and a fully discrete difference method [25].

Also, we show the approximate solution’s graphs and the absolute error for ν = 2 with K = K̃ = 1,M = M̃ = 5
and zeros of Fibonacci polynomials as nodal points in Figure 6.

7. Conclusion

A new numerical optimization technique is proposed to evaluate the approximate solution of time-fractional
diffusion-wave equations. This method is based on general Lagrange scaling functions. In GLSFs, by selecting various
nodal points in Lagrange polynomials, we have various kinds of orthogonal or non-orthogonal Lagrange scaling func-
tions. We compute a general Riemann-Liouville fractional integral operator of GLSFs for these functions, exactly and
without considering nodal points. The operator and applying optimization method are used to insert the mentioned
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Table 4. The comparison of the achieved results for ν = 1.5 in Example 6.3.

(x, t) Compact difference method [5] A fully discrete difference method [25] Present method Exact Solution

( 1
8 , 1) 4.3724E−2 4.34346E−2 4.34332E−2 4.32436E−2

( 2
8 , 1) 8.0607E−2 8.02566E−2 8.00538E−2 7.99519E−2

( 3
8 , 1) 1.0532E−1 1.04860E−1 1.04595E−1 1.04399E−1

( 4
8 , 1) 1.1400E−1 1.1500E−1 1.13213E−1 1.13001E−1

Figure 6. Graphs of the absolute error (left) and approximate solution (right) at K = K̃ = 1,M =

M̃ = 5 and ν = 2 in Example 6.3.

problem into a set of algebraic equations. We investigate the error analysis for the method. Some numerical problems
are proposed with graphs and tables to examine the efficiency and effectiveness of the proposed algorithm.
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