- [1] P. Akhavan, N. A. Ebrahim, and M. A. Fetrati, Major trends in knowledge management research: a bibliometric study, Scientometrics, 107(3) (2016), 1249-1264.
- [2] A. H. Bhrawy, E. H. Doha, D. Baleanu, and S. S. Ezz-Eldien, A spectral tau algorithm based on Jacobi operational matrix for numerical solution of time fractional diffusion-wave equations, Journal of Computational Physics, 293 (2015), 142-156.
- [3] M. Dehghan, M. Abbaszadeh, and A. Mohebbi, Analysis of a meshless method for the time fractional diffusionwave equation, Numerical algorithms, 73(2) (2016), 445-476.
- [4] M. Dehghan, M. Safarpoor, and M. Abbaszadeh, Two high-order numerical algorithms for solving the multiterm time fractional diffusion-wave equations, Journal of Computational and Applied Mathematics, 290 (2015), 174-195.
- [5] R. Du, W. R. Cao, and Z. Z. Sun, A compact difference scheme for the fractional diffusion-wave equation, Applied Mathematical Modelling, 4(10) (2010), 2998-3007.
- [6] A. Esen, Y. Ucar, N. Yagmurlu, and O. Tasbozan, A Galerkin finite element method to solve fractional diffusion and fractional diffusion-wave equations, Mathematical Modelling and Analysis, 18(2) (2013), 260-273.
- [7] Z. Foroozandeh and M. Shamsi, Solution of nonlinear optimal control problems by the interpolating scaling functions, Acta Astronautica, 72 (2012), 21-26.
- [8] H. Hajinezhad and A. R. Soheili, A numerical approximation for the solution of a time-fractional telegraph equation by the moving least squares approach, Computational Methods for Differential Equations, 11 (2023), 716-726.
- [9] M. H. Heydari, M. R. Hooshmandasl, F. M. Ghaini, and C. Cattani, Wavelets method for the time fractional diffusion-wave equation, Physics Letters A, 379(3) (2015), 71-76.
- [10] F. Liu, M. M. Meerschaert, R. J. McGough, P. Zhuang, and Q. Liu, Numerical methods for solving the multi-term time-fractional wave-diffusion equation, Fractional Calculus and Applied Analysis, 16(1) (2013), 9-25.
- [11] R. Metzler and J. Klafter, The random walks guide to anomalous diffusion: a fractional dynamics approach, Physics Reports, 339 (2000), 1-77.
- [12] H. Mohammadi Firouzjaei, H. Adibi, and M. Dehghan, Local discontinuous Galerkin method for distributedorder timefractional diffusionwave equation: Application of Laplace transform, Mathematical Methods in the Applied Sciences, 44(6) (2021), 4923-4937.
- [13] S. Nemat and S. Sedaghat, Matrix method based on the second kind Chebyshev polynomials for solving time fractional diffusion-wave equations, Journal of Applied Mathematics and Computing, 51 (2016), 189-207.
- [14] R. R. Nigmatullin, To the theoretical explanation of the universal response, Physics of the Solid State B123 (1984), 739-745.
- [15] F. Nourian, M. Lakestani, S. Sabermahani, and Y. Ordokhani, Touchard wavelet technique for solving timefractional Black-Scholes model, Computational and Applied Mathematics, 41(4) (2022), 150.
- [16] I. Podlubny, Fractional Differential Equations, Academic Press, New York, 1999.
- [17] K. Rabiei and M. Razzaghi, A new numerical method for solving problems in fractional differential equations by using Mott wavelets, In 2022 Virtual Joint Mathematics Meetings (JMM 2022), AMS.
- [18] K. Rabiei and M. Razzaghi, An approach to solve fractional optimal control problems via fractional-order Boubaker wavelets, Journal of Vibration and Control, 29(7-8) (2023), 1806-1819.
- [19] K. Rabiei and M. Razzaghi, Fractional-order Boubaker wavelets method for solving fractional Riccati differential equations, Applied Numerical Mathematics, 168 (2021), 221-234.
- [20] S. Sabermahani and Y. Ordokhani, Fibonacci wavelets and Galerkin method to investigate fractional optimal control problems with bibliometric analysis, Journal of Vibration and Control, 27(15-16) (2021), 1778-1792.
- [21] S. Sabermahani, Y. Ordokhani, and S. A. Yousefi, Fractional-order general Lagrange scaling functions and their applications, BIT Numerical Mathematics, 60 (2020), 101-128.
- [22] S. Sabermahani, Y. Ordokhani, and S. A. Yousefi, Numerical approach based on fractional-order Lagrange polynomials for solving a class of fractional differential equations, Computational and Applied Mathematics, 37 (2018), 3846-3868.
- [23] M. So, J. Kim, S. Choi, et al., Factors affecting citation networks in science and technology: focused on non-quality factors, Quality & Quantity, 49(4) (2015), 1513-1530.
- [24] F. Soltani Sarvestani, M. H. Heydari, A. Niknam, and Z. Avazzadeh, A wavelet approach for the multi-term time fractional diffusion-wave equation, International Journal of Computer Mathematics, 96(3) (2019), 640-661.
- [25] Z. Z. Sun and X. Wu, A fully discrete difference scheme for a diffusion-wave system, Applied Numerical Mathematics, 56(2) (2006), 193-209.
- [26] S. Taherkhani, I. Najafi Khalilsaraye, and B. Ghayebi, A pseudospectral Sinc method for numerical investigation of the nonlinear time-fractional Klein-Gordon and sine-Gordon equations, Computational Methods for Differential Equations, 11(2) (2023), 357-368.
- [27] S. Tavan, M. Jahangiri Rad, A. Salimi Shamloo, and Y. Mahmoudi, A numerical scheme for solving time-fractional Bessel differential equations, Computational Methods for Differential Equations, 10(4) (2022), 1097-1114.
- [28] F. Yang, Y. Zhang, X. Liu, et al., The Quasi-Boundary Value Method for Identifying the Initial Value of the Space-Time Fractional Diffusion Equation. Acta Mathematica Scientia, 40 (2020), 641-658.
- [29] F. Zhou and X. Xu, Numerical solution of time-fractional diffusion-wave equations via Chebyshev wavelets collocation method, Advances in Mathematical Physics, 2017 (2017).
|