تعداد نشریات | 43 |
تعداد شمارهها | 1,275 |
تعداد مقالات | 15,753 |
تعداد مشاهده مقاله | 51,868,972 |
تعداد دریافت فایل اصل مقاله | 14,692,051 |
Application of general Lagrange scaling functions for evaluating the approximate solution time-fractional diffusion-wave equations | ||
Computational Methods for Differential Equations | ||
مقالات آماده انتشار، پذیرفته شده، انتشار آنلاین از تاریخ 11 اردیبهشت 1403 اصل مقاله (2.85 M) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22034/cmde.2024.59007.2503 | ||
نویسندگان | ||
Sedigheh Sabermahani1؛ Yadollah Ordokhani* 1؛ Praveen Agarwal2 | ||
1Department of Mathematics, Faculty of Mathematical Sciences, Alzahra University, Tehran, Iran. | ||
21.Department of Mathematics, Anand International College of Engineering, Jaipur 303012, Rajesthan, India. 2. Nonlinear Dynamics Research Center (NDRC), Ajman University, Ajman, UAE. 3. International Center for Basic and Applied Sciences, Jaipur, 302029, India. | ||
چکیده | ||
This manuscript provides an efficient technique for solving time-fractional diffusion-wave equations using general Lagrange scaling functions (GLSFs). In GLSFs, by selecting various nodes of Lagrange polynomials, we get various kinds of orthogonal or non-orthogonal Lagrange scaling functions. General Riemann-Liouville fractional integral operator (GRLFIO) of GLSFs is obtained generally. General Riemann-Liouville fractional integral operator of the general Lagrange scaling function is calculated exactly using the Hypergeometric functions. The operator extraction method is precisely calculated and this has a direct impact on the accuracy of our method. The operator and optimization method are implemented to convert the problem to a set of algebraic equations. Also, error analysis is discussed. To demonstrate the efficiency of the numerical scheme, some numerical examples are examined. | ||
کلیدواژهها | ||
time-fractional diffusion-wave equation؛ general Riemann-Liouville pseudo-operational matrix؛ optimization method؛ general Lagrange scaling functions | ||
آمار تعداد مشاهده مقاله: 90 تعداد دریافت فایل اصل مقاله: 147 |