- [1] X. Antonie, Q. Tang, and J. Zhang, On the numerical solution and dynamical laws of nonlinear fractional Shrödinger/Gross-Pitaevskii equations, International journal of computer mathematics, 6-7 (2018), 1423–1443.
- [2] M. D. Buhman, Spectral convergence of multiquadratic interpolation, Proc. Edinburg Math. Soc., 36 (1993), 319–333.
- [3] J. X. Cao, C. P. Li, and Y. Q. Chen, High-order approximation to Caputo derivatives and Caputo-type advectiondiffusion equations (II), Fractional Calculus and Applied Analysis, 18(3) (2015), 735-761.
- [4] R. E. Carlson and T. A. Foley, The parameter r2 in multiquadratic interpolation, Comput. Math. Appl., 21 (1991), 29–42.
- [5] R. Cavoretto, G. E. Fasshauer, and M. McCourt, An introduction to the Hilbert-Schmidt SVD using iterated Brownian bridge kernels, Numer. Algorithms, 68(2) (2015), 393-422.
- [6] E. H. Dohaa, A. H. Bhrawy, and S. S. Ezz-Eldien, A Chebyshev spectral method based on operational matrix for initial and boundary value problems of fractional order, Computers and Mathematics with Applications, 62 (2011), 2364–2373.
- [7] G. E. Fasshauer and M. J. MacCourt, Stable evaluation of Gaussian radial basis function interpolants, SIAM J. Sci. Comput., 34(2) (2012), A737–A762.
- [8] R. P. Feynman and A. R. Hibbs, Quantum mechanics and path integrals, McGraw-Hill, New York, NY, USA, 1965.
- [9] B. Guo, Y. Han, and J. Xin, Existence of the global smooth solution to the period boundary value problem of fractional nonlinear Schrödinger equation, Applied Mathematics and Computation, 204(1) (2008), 468–477.
- [10] M. A. E. Herzallah and K. A. Gepreel, Approximate solution to the time-space fractional cubic nonlinear Schr¨odinger equation, Appl. Math. Model., 36 (2012), 5678–5685.
- [11] J. Hu, J. Xin, and H. Lu, The global solution for a class of systems of fractional nonlinear Schrödinger equations with periodic boundary condition, Computers and Mathematics with Applications, 62(3) (2011), 1510–1521.
- [12] A. A. Kilbas, H. M. Srivastava, and J. J. Trujillo, Theory and applications of fractional differential equations, Elsevier, Amsterdam, 2006.
- [13] M. Kirane, Finite element method for time- space- fractional Schödinger equation, Electronic Journal of Differential Equations,166 (2017), 1–18.
- [14] N. Laskin, Fractional Schr¨odinger equation, Phys. Rev. E, 66 (2002), 056108.
- [15] N. Laskin, Fractals and quantum mechanics, Chaos, 10 (2000), 780–790.
- [16] Q. Liu, Y. T. Gu, P. Zhuang, F. Liu, and Y. F. Nie, An implicit RBF meshless approach for time fractional diffusion equations, Comput. Mech., 48, (2011), 1–12.
- [17] W. K. Liu and W. M. Han, Reproducing kernel element method. Part I: Theoritical information, Comput. Methods Appl. Mech. Engrg., 193 (2004), 933–951.
- [18] N. Liu and W. Jiang, A numerical method for solving the time fractional Schrödinger equation, Adv Comput Math.,44 (2018), 1235–1248.
- [19] Q. Liu, F. Zeng, and Ch. Li, Finite difference method for time-space-fractional Schödinger equation, International Journal of Computer Mathematics, (2014), 1439–1451.
- [20] J. M. Melenk and I. Babuska, The partition of unity method: basic theory and applications, Comput. Methods Appl. Mech. Engrg., 139 (1996), 289–314.
- [21] M. Naber, Time fractional Schrödinger equation, J. Math. Phys., 45(8) (2004), 3339–3352.
- [22] M. Pazouki and R. Schaback, Bases for kernel-based spaces, Journal of Computational and Applied Mathematics,236(4) (2011), 575–588.
- [23] C. Piret and E. Hanert, A radial basis functions method for fractional diffusion equations, J. Comput. Phys., 238 (2013), 71–81.
- [24] I. Podlubny, Fractional differential equations, Academic Press, San Diego, 1999.
- [25] A. Quarteroni, Riccardo Sacco, and Fausto Saleri, Numerical mathematics, Springer, 2000.
- [26] J. Rashidinia, G. Fasshauer, and M. Khasi, A stable method for the evaluation of Gaussian radial basis function solutions of interpolation and collocation problems, Comput. Math. Appl., 72(1) (2016), 178–193.
- [27] J. Rashidinia and M. Khasi, Stable Gaussian radial basis function method for solving Helmholtz equations, Computational Methods for Differential Equations, 7(1) (2019), 138–151.
- [28] J. Rashidinia, M. Khasi, and G. E. Fasshauer, A stable Gaussian radial basis function method for solving nonlinear unsteady convection-diffusion-reaction equations, Computers and Mathematics with Applications, 75 (2018), 1831–1850.
- [29] S. G. Samko, A. A. Kilbas, and O. I. Marichev, Fractional integrals and derivatives: Theory and applications, Gordon and Breach, New York, 1993.
- [30] L. S. Schulman, Techniques and applications of path integration, John Wiley and Sons, New York, NY, USA, 1981.
- [31] P. Wang and C. Huang, An energy conservative difference scheme for the nonlinear fractional Schrödinger equations, J. Comput. Phys., 293 (2015), 238–251.
- [32] D. Wang, A. Xiao, and W. Yang, Crank-Nicolson difference scheme for the coupled nonlinear Schrödinger equations with the Riesz space fractional derivative, J. Comput. Phy., 242 (2013), 670–681.
- [33] D. Wang, A. Xiao, and W. Yang, Maximum-norm error analysis of a difference scheme for the space fractional CNLS, Appl. Math. Comput., 257 (2015), 241–251.
- [34] S. W. Wang and M. Y. Xu, Generalized fractional Schrödinger equation with space-time fractional derivatives, J. Math. Phys., 48 (2007), 043502.
- [35] X. Zhao, Z. Z. Sun, and Z. P. Hao, A fourth-order compact ADI scheme for two-dimensional nonlinear space fractional Schrödinger equation, SIAM J. Sci. Comput., 36(6) (2014), A2865–A2886.
|