- [1] M. A. Abdou, Generalized solitonary and periodic solutions for nonlinear partial differential equations by the Exp–function method, Nonlinear Dyn, 52 (2008), 1–9.
- [2] N. H. Ali, S. A. Mohammed, and J. Manafian, Study on the simplified MCH equation and the combined KdVmKdV equations with solitary wave solutions, Partial Diff. Eq. Appl. Math., 9 (2024), 100599.
- [3] A. Bekir, Applications of the extended tanh method for coupled nonlinear evolution equations, Commun. Nonlin. Sci. Numer. Simul, 13 (2008), 1748–1757.
- [4] A. Boz and A. Bekir, Application of Exp–function method for (3+1)-dimensional nonlinear evolution equations, Comput. Math. Appl, 56 (2008), 1451–1456.
- [5] M. Dehghan and J. Manafian, The solution of the variable coefficients fourth–order parabolic partial differential equations by homotopy perturbation method, Z. Naturforsch, 64(a) (2009), 420-430.
- [6] M. Dehghan, J. Manafian, and A. Saadatmandi, Solving nonlinear fractional partial differential equations using the homotopy analysis method, Num. Meth. Partial Differential Eq. J., 26 (2010), 448-479.
- [7] M. Dehghan, J. Manafian, and A. Saadatmandi, The solution of the linear fractional partial differential equations using the homotopy analysis method, Z. Naturforsch, 65(a) (2010), 935-949.
- [8] M. Dehghan, J. Manafian, and A. Saadatmandi, Application of semi-analytic methods for the Fitzhugh-Nagumo equation, which models the transmission of nerve impulses, Math. Meth. Appl. Sci, 33 (2010), 1384-1398.
- [9] M. Dehghan, J. Manafian Heris, and A. Saadatmandi, Application of the Exp-function method for solving a partial differential equation arising in biology and population genetics, Int. J. Num. Methods for Heat Fluid Flow, 21 (2011), 736-753.
- [10] M. Dehghan, J. Manafian Heris, and A. Saadatmandi, Analytical treatment of some partial differential equations arising in mathematical physics by using the Exp-function method, Int. J. Modern Phys. B, 25 (2011), 2965-2981.
- [11] M. Fazli Aghdaei and J. Manafianheris, Exact solutions of the couple Boiti-Leon-Pempinelli system by the generalized (GG0 )-expansion method, J. Math. Extension, 5 (2011), 91-104.
- [12] AP. Fordy, Soliton theory: a survey of results, Manchester: MUP, 1990.
- [13] U. Goktas and E. Hereman, Symbolic computation of conserved densities for systems of nonlinear evolution equations, J. Symb. Comput, 24 (1997), 591-622.
- [14] Y. Gu, S. Malmir, J. Manafian, O. A. Ilhan, A. A. Alizadeh, and A. J. Othman, Variety interaction between k-lump and k-kink solutions for the (3+1)-D Burger system by bilinear analysis, Results Phys., 43 (2022), 106032.
- [15] J. H. He, Non-perturbative method for strongly nonlinear problems. Dissertation, De-Verlag im Internet GmbH, Berlin, (2006).
- [16] J. H. He and X. H. Wu, Exp–function method for nonlinear wave equations, Chaos, Solitons Fractals, 30 (2006), 700-708.
- [17] J. H. He, S. K. Elagan, and Z. B. Li, Geometrical explanation of the fractional complex transform and derivative chain rule for fractional calculus, Phys. Lett. A, 376 (2012), 257-259.
- [18] R. Hirota, The Direct Method in Soliton Theory, Cambridge Univ. Press, 2004.
- [19] A. J. M. Jawad, M. D. Petkovic, and A. Biswas, Modified simple equation method for nonlinear evolution equations, Appl. Math. Comput., 217 (2010), 869-877.
- [20] Y. Kivshar and D. Pelinovsky, Self-focusing and transverse instabilities of solitary waves, Phys. Rep, 331 (2000), 117-195.
- [21] M. Lakestani, J. Manafian, A. R. Najafizadeh, and M. Partohaghighi, Some new soliton solutions for the nonlinear the fifth-order integrable equations, Comput. Meth. Diff. Equ., 10(2) (2022), 445-460.
- [22] W. Malfliet, Solitary wave solutions of nonlinear wave equations, Am. J. Phys, 60 (1992), 650-654.
- [23] W. Malfliet and W. Hereman, The tanh method: II. Perturbation technique for conservative systems, Phys. Scr, 54 (1996), 569-575.
- [24] J. Manafian Heris and M. Bagheri, Exact solutions for the modified KdV and the generalized KdV equations via Exp-function method, J. Math. Extension, 4 (2010), 77-98.
- [25] J. Manafian Heris and M. Lakestani, Solitary wave and periodic wave solutions for variants of the KdV-Burger and the K(n, n)-Burger equations by the generalized tanh-coth method, Commun. Num. Anal., 2013 (2013), 1-18.
- [26] J. Manafian Heris and M. Lakestani, Exact solutions for the integrable sixth-order Drinfeld-Sokolov-SatsumaHirota system by the analytical methods, International Scholarly Research Notices, 2014 (2014), Article ID 840689, 1-8.
- [27] J. Manafian and M. Lakestani, Application of tan(φ/2)-expansion method for solving the Biswas-Milovic equation for Kerr law nonlinearity, Optik, 127(4) (2016), 2040-2054.
- [28] J. Manafian and M. Lakestani, Abundant soliton solutions for the Kundu-Eckhaus equation via tan(φ(ξ))expansion method, Optik, 127(14) (2016), 5543-5551.
- [29] J. Manafian and M. Lakestani, Optical soliton solutions for the Gerdjikov-Ivanov model via tan(φ/2)-expansion method, Optik, 127(20) (2016), 9603-9620.
- [30] J. Manafian and M. Lakestani, N-lump and interaction solutions of localized waves to the (2+ 1)-dimensional variable-coefficient Caudrey-Dodd-Gibbon-Kotera-Sawada equation, J. Geom. Phys., 150 (2020), 103598.
- [31] J. Manafian, L. A. Dawood, and M. Lakestani, New solutions to a generalized fifth-order KdV like equation with prime number p = 3 via a generalized bilinear differential operator, Partial Differ. Equ. Appl. Math., 9 (2024), 100600.
- [32] J. Manafian, L. A. Dawood, and M. Lakestani, New solutions to a generalized fifth-order KdV like equation with prime number p = 3 via a generalized bilinear differential operator, Partial Diff. Eq. Appl. Math., 9 (2024), 100600.
- [33] X. H. Menga, W. J. Liua, H. W. Zhua, C. Y. Zhang, and B. Tian, Multi-soliton solutions and a B¨acklund transformation for a generalized variable-coefficient higher-order nonlinear Schr¨o dinger equation with symbolic computation, Phys. A., 387 (2008), 97-107.
- [34] S. R. Moosavi, N. Taghizadeh, and J. Manafian, Analytical approximations of one-dimensional hyperbolic equation with non-local integral conditions by reduced differential transform method, Comput. Meth. Diff. Equ., 8(3) (2020), 537-552.
- [35] H. Naher and F. A. Abdullah, New approach of (G’/G)-expansion method and new approach of generalized
- (G’/G)-expansion method for nonlinear evolution equation, AIP Advan., 3 (2013), 032116, [36] S. Novikov, S. Manakov, L. Pitaevskii, and V. Zakharov, Theory of solitons, NY: Plenum, 1984.
- [37] P. Olver, Applications of lie groups to differential equations, New York, Springer, 1993.
- [38] M. Wadati, Introduction to solitons, Pramana: J. Phys, 57 (2001), 841-847.
- [39] J. Wang, A list of 1 + 1 dimensional integrable equations and their properties, J. Nonlinear Math Phys, 9 (2002), 213-233.
- [40] A. M. Wazwaz, An analytic study of compactons structures in a class of nonlinear dispersive equations, Math. Comput. Simu, 63 (2003), 35-44.
- [41] A. M. Wazwaz, Exact and explicit traveling wave solutions for the nonlinear Drinfeld-Sokolov system, Commun. Nonlin. Sci. Numer. Simul, 11 (2006), 311-325.
- [42] A. M. Wazwaz, Traveling wave solutions for combined and double combined sine-cosine-Gordon equations by the variable separated ODE method, Appl. Math. Comput., 177 (2006), 755-760.
- [43] X. H. Wu and J. H. He, Solitary solutions, periodic solutions and compacton-like solutions using the Exp-function method, Comput. Math. Appl, 54 (2007), 966-986.
- [44] N. Zabusky and M. Kruskal, Interaction of solitons in a collisionless plasma and the recurrence of initial states, Phys. Rev. Lett, 15 (1965), 240-243.
- [45] M. Zhang, X. Xie, J. Manafian, O. A. Ilhan, and G. Singh, Characteristics of the new multiple rogue wave solutions to the fractional generalized CBS-BK equation, J. Adv. Res., 38 (2022), 131-142.
|