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Abstract

A unified explicit form for difference formulas to approximate fractional and classical derivatives is presented.
The formula gives finite difference approximations for any classical derivative with a desired order of accuracy at

any nodal point in computational domain. It also gives Grünwald type approximations for fractional derivatives

with arbitrary order of approximation at any nodal point. Thus, this explicit form unifies approximations of both
types of derivatives. Moreover, for classical derivatives, it also provides various finite difference formulas such as

forward, backward, central, staggered, compact, non-compact, etc. Efficient computations of the coefficients of

the difference formulas are also presented leading to automating the solution process of differential equations with
a given higher order accuracy. Some basic applications are presented to demonstrate the usefulness of this unified

formulation.
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1. Introduction

Fractional calculus has a history that goes back to L’Hospital, Leibniz, and Euler [5, 15]. A historical account of early
works on fractional calculus can be found, for eg., in [25]. Fractional integrals and fractional derivatives are extensions
of the integer-order (or we call classical) integrals and derivatives to a real or complex order. Various definitions of
fractional derivatives have been proposed in the past, among which the Riemann-Liouville, Grünwald-Letnikov and
Caputo derivatives are common and established.

Recently, fractional calculus found its way into the application domain in science and engineering [2, 10, 18, 20, 28].
Fractional derivatives are also found to be more suitable to describe anomalous transport in an external field derived
from the continuous time random walk [3], resulting in a fractional diffusion equation (FDE). The FDE involves
fractional derivatives either in time, in space or in both variables.

Difference approximation in the form of an infinite series is a widely used tool for numerically solving problems
involving FDEs. The weights of the approximation formula are obtained from the coefficients of a generator W1(z) =
(1− z)α expressed in a power series form [23]. A shifted form of the difference approximation was proposed in [19] to
remedy some stability issues in solving space-fractional diffusion equations. Both difference approximations and their
shifted form are known to be of first-order accuracy (see section 2 for details).

For higher-order approximations, Lubich [17] obtained some generators in the form of power of polynomials or
rational polynomials. The coefficients of the expansion of the generators provide the coefficients for the approximation
with higher-order accuracy without shift. Shifted forms with these coefficients give only first-order approximations
regardless of their higher orders in non-shifted forms.
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Recently, generators for higher-order approximations with shifts have been obtained by Nasir and Nafa [22] and
applied to fractional diffusion equations with second-order accuracy and a third-order approximation was obtained
from the second-order approximation and used for numerical approximations in [21].

The generators of these approximations are usually obtained manually by hand calculations, solving system equa-
tions, or by symbolic computations and these processes are specific to the problem at hand.

However, most of the scientific research searching for mathematical patterns is aimed at automating the relevant
scientific processes so that the task may be performed for more general problems with minimal human intervention
[14]. In this regard, in numerical approximations and solution processes, especially in discretized numerical calculus,
it is desirable to have general formulas for the approximation of derivatives that can be automated to be selected in
approximation processes.

The present authors [9] have obtained an explicit form for generators that gives approximations for fractional
derivatives with shifts retaining their higher orders. This form generalizes the Lubich form with shift and hence the
Lubich form becomes a special case with no shift.

Interestingly, this explicit form also gives coefficients for finite difference formulas (FDFs) for classical derivatives
as demonstrated in [9]. However, it gives higher-order compact FDFs for the first derivative only. Here, a compact
FDF means the FDF which uses a minimum number of function values at the discrete grid points. For higher-order
classical derivatives, the resulting FDFs are not compact although they are valid for FDFs.

Usually, the derivation of the weights for the FDFs for classical derivatives involves linear combinations of the
Taylor series expansions of a function at various grid points about the point of the derivative. For higher order
accuracy requirements, this leads to uncontrollable hand calculations, solving large systems of linear equations, or
heavy symbolic computations [13]. Besides, this technique is not suitable for fractional derivatives as the latter
involves function values at infinite grid points, due to its non-local nature.

Explicit forms for finite difference formulas for classical derivatives have appeared in the past (see for eg. [1, 4, 6,
7, 11, 12, 16, 24, 26, 27, 30] ). However, all of them are focused on the classical derivatives only.

In this paper, we extend the explicit form developed in [9] to a more general unified explicit form that gives more
new approximations for fractional derivatives and various finite difference formulas for any classical derivative. The
formulation also provides error coefficients of the approximation for the first few terms.

We also present an algorithm to efficiently compute the coefficients of the unified difference formulas. This enables
one to compute the coefficients in exact form where necessary and real coefficients with efficiency.

This paper is arranged as follows: We start with preliminary preparations in section 2. The unified explicit form is
given in section 3. Efficient computational strategies are described in section 4. Various difference formulas for classical
and fractional derivatives are given in section 5 demonstrating the unified nature of the explicit form. Applications of
the difference formulas are presented in section 6 and finally, section 7 draws some conclusions.

2. Preliminaries and terminologies

We list here relevant materials and define terminologies related to the subject of this paper.
Let f(x) be a sufficiently smooth function defined on a real domain R.

Definition 2.1. The left(-) and right(+) Riemann-Liouville (R-L) fractional derivatives of real order α > 0 are defined
as

RLDα
x−f(x) =

1

Γ(n− α)

dn

dxn

∫ x

−∞

f(η)

(x− η)α+1−n dη, (2.1)

and

RLDα
x+f(x) =

(−1)n

Γ(n− α)

dn

dxn

∫ ∞
x

f(η)

(η − x)α+1−n dη, (2.2)

respectively, where n = [α] + 1, an integer with n− 1 < α < n and Γ(·) denotes the gamma function.



CMDE Vol. 13, No. 1, 2025, pp. 307-326 309

Definition 2.2. The left Caputo fractional derivative of order α > 0 is defined analogously to (2.1) by

CDα
x−f(x) =

1

Γ(n− α)

∫ x

−∞

f (n)(η)

(x− η)α+1−n dη. (2.3)

The right Caputo derivative is defined analogously to (2.2).

Definition 2.3. The left/right Grünwald-Letnikov (G-L) fractional deriavtives are given respectively by

GLDα
x∓f(x) = lim

h→0

1

hα

∞∑
k=0

(−1)k
(
α

k

)
f(x∓ kh), (2.4)

where the Grüwald weights, g
(α)
k = (−1)k

(
α
k

)
= (−1)kΓ(α+1)

k!Γ(α−k+1) are the coefficients of the series expansion of the Grünwald
generator

W1(z) = (1− z)α =
∑∞
k=0 g

(α)
k zk.

These definitions of fractional derivatives are equivalent under certain smoothness conditions on f(x) [23]. Therefore,
we denote them commonly as Dα

∓xf(x) when the conditions are met.

Definition 2.4 (Difference approximations). For the left and right fractional derivatives of order α > 0, we define

(1) the Grünwald approximation (GA) as

δα±hf(x) =
1

hα

∞∑
k=0

g
(α)
k f(x∓ kh), (2.5)

(2) the shifted Grünwald approximation (ShGA) [19] with shift r as

δα±h,rf(x) =
1

hα

∞∑
k=0

g
(α)
k f(x∓ (k − r)h), (2.6)

where h > 0 is the step size between successive discrete points in the domain referenced from x. Hence, the difference
approximations are defined on a uniform grid points xk = x− kh, k ∈ Z.

The approximation order of both GA and ShGA is one for integer shifts [19].

δα±,h,rf(x) = Dα
x∓f(x) +O(h).

For a generalization of the ShGA, we define the following.

Definition 2.5. Let {w(α)
k } be a sequence of real numbers with generating function

W (z) =

∞∑
k=0

w
(α)
k zk.

Define a shifted difference formula

∆α
±h,p,rf(x) =

1

hα

∞∑
k=0

w
(α)
k f(x∓ (k − r)h). (2.7)

We say that

(1) W (z) approximates the fractional derivatives Dα
x∓ if

lim
h→0

∆α
±h,p,rf(x) = Dα

x∓f(x), (2.8)

(2) W (z) approximates the fractional derivatives Dα
x∓ with order p if

∆α
±h,p,rf(x) = Dα

x∓f(x) +O(hp). (2.9)

We call the difference form (2.7) the Grünwald type approximations (GTAs), W (z) the Grünwald type generator (GTG)
and wk the Grünwald type weights (GTWs).
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Table 1. Polynomials Pp(z) for Lubich generators Wp(z) = (Pp(z))
α.

p Pp(z) p Pp(z)

1 1− z 4 25
12 − 4z + 3z2 − 4

3z
3 + 1

4z
4

2 3
2 − 2z + 3

2z
2 5 137

60 − 5z + 5z2 − 10
3 z

3 + 5
4z

4 − 1
5z

5

3 11
6 − 3z + 3

2z
2 − 1

3z
3 6 147

60 − 6z + 15
2 z

2 − 20
3 z

3 + 15
4 z

4 − 6
5z

5 + 1
6z

6

A set of GTGs for higher-order GTAs was established in Lubich [17] by utilizing the characteristic polynomials of
linear multistep methods (LMMs) for classical initial value problems. Particularly, a set of generators in the form of
Wp(z) = (Pp(z))

α was obtained from the backward difference LMM for orders 1 ≤ p ≤ 6 and is listed in Table 1. For
p = 1, it gives the Grünwald generator W1(z).

Definition 2.6. We call the generators given in Table 1 for orders 2 ≤ p ≤ 6 as the Lubich generators and their
weights the Lubich weights.

The Lubich generators are to be used without a shift to obtain their respective higher approximation orders.
Applying the Lubich weights with non-zero shifts reduces the approximation orders to one [22], [9].

Nasir and Nafa [22] obtained a generator W2,r(z) for an order 2 approximation whose weights can be used with
shift without reducing the order:

W2,r(z) =

((
3

2
− r

α

)
+

(
−2 +

2r

α

)
z +

(
1

2
− r

α

)
z2

)α
. (2.10)

An equivalent characterization for a GTA of order p with shift r was established by the authors in [22] and is given
in Proposition 2.7.

Proposition 2.7. (Theorem 1 [21, 22]): Let α > 0, n = [α]+1, and a non-negative integer m be given. Let a function

f(x) ∈ Cm+n+1(R) and Dkf(x) = dk

dxk
f(x) ∈ L1(R) for 0 ≤ k ≤ m + n + 1. Then, a generator W (z) approximates

the fractional derivatives Dα
x±f(x) with order p and shift r, 1 ≤ p ≤ m, if and only if

G(z) =
1

zα
W (e−z)erz = 1 +O(zp). (2.11)

Moreover, if G(z) = 1 +
∑∞
l=p alz

l, where al ≡ al(α, r), then we have

∆α
±h,p,rf(x) = Dα

x±f(x) + hpapD
α+p
x± f(x) + hp+1ap+1D

α+p+1
x± f(x) + · · ·

+ hmamD
α+m
x± f(x) +O(hm+1). (2.12)

This characterization theorem was used in [9] to obtain an explicit form for generators of the form W (z) =
(β0 + β1z + · · ·+ βpz

p)
α

for an approximation of order p with shift r.

Proposition 2.8. (Theorem 3 [9]) The generator of the form

Wp,r(z) = (β0 + β1z + · · ·+ βpz
p)α, (2.13)

approximates the fractional derivatives Dα
x∓f(x) with order p and shift r if and only if the coefficients βj are given by

βj = −

 p∑
m=0
m 6=j

p∏
l=0
l 6=m,j

(λ− j)


 p∏
m=0
m6=j

1

j −m

 , j = 0, 1, 2, · · · , p, (2.14)

where λ = r/α, and the leading error coefficient is given by
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Table 2. Coefficients for p(z) = β0 + β1z + · · ·+ βpz
p for generator Wp,r(z) = (p(z))α.

p Coefficients βj , 0 ≤ j ≤ p with λ = r/α

1 β0 = 1 β1 = −1
2 β0 = −λ+ 3

2 β1 = 2λ− 2
β2 = −λ+ 1

2

3 β0 = λ2

2 − 2λ+ 11
6 β1 = − 3λ2

2 + 5λ− 3

β2 = 3λ2

2 − 4λ+ 3
2 β3 = −λ

2

2 + λ− 1
3

4 β0 = −λ
3

6 + 5λ2

4 −
35λ
12 + 25

12 β1 = 2λ3

3 −
9λ2

2 + 26λ
3 − 4

β2 = −λ3 + 6λ2 − 19λ
2 + 3 β3 = 2λ3

3 −
7λ2

2 + 14λ
3 −

4
3

β4 = −λ
3

6 + 3λ2

4 −
11λ
12 + 1

4

5 β0 = λ4

24 −
λ3

2 + 17λ2

8 − 15λ
4 + 137

60 β1 = − 5λ4

24 + 7λ3

3 −
71λ2

8 + 77λ
6 − 5

β2 = 5λ4

12 −
13λ3

3 + 59λ2

4 − 107λ
6 + 5 β3 = − 5λ4

12 + 4λ3 − 49λ2

4 + 13λ− 10
3

β4 = 5λ4

24 −
11λ3

6 + 41λ2

8 − 61λ
12 + 5

4 β5 = −λ
4

24 + λ3

3 −
7λ2

8 + 5λ
6 −

1
5

R =
α

(p+ 1)!

p∑
j=0

(λ− j)p+1βj . (2.15)

Using this explicit form, the authors in [9] have constructed generators of the form (2.13), for orders 1 ≤ p ≤ 6 with
shifts and the first five of the generators are listed in Table 2.

When there is no shift (r = 0), these generators Wp,0(z) are the Lubich generators in Table 1. Moreover, for order
p = 1 it reduces to the Grünwald generator W1(z).

Definition 2.9. We call the generators given in [9] for orders 2 ≤ p ≤ 6 the Lubich-type generators and their weights
the Lubich type weights.

We mention that the Lubich-type generators also give FDFs for classical derivatives with integer derivative order
α. However, we point out that the Lubich-type operators give compact finite difference formulas for the first order
derivative only. For other higher-order derivatives, we get valid finite difference formulas with non-compact form.

3. A unified explicit form

In this section, we extend the explicit form (2.14) that appeared in [9] to a more general form that covers compact
finite difference formulas for higher order classical derivatives as well as some new Lubich-type generators for fractional
derivatives.

For this, we introduce a base differential order d, a positive integer, to express the fractional differential operator
as

Dα
x± =

(
Dd
)α
d

x± ,

and consider approximating the fractional derivative by a Lubich-type generator of the form

W (z) =
(
β0 + β1z + · · ·+ βN−1z

N−1
)α
d = (P (z))

α
d , (3.1)

where P (z) corresponds to the classical derivative operator Dd.
The coefficients βj in (3.1) are to be determined based on the fractional order α, the required approximation order

p, and shift r for the GTA. The degree N −1 of P (z) will also be determined according to the choice of p and d. Then,
we have the following theorem leading to our main result.

Theorem 3.1. With assumptions of Proposition 2.7, the generator of the form
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W (z) =
(
β0 + β1z + · · ·+ βN−1z

N−1
)α
d , where d is a positive integer, approximates the fractional derivatives

Dα
x∓f(x) at x with order p and shift r if and only if the coefficients βj satisfy the linear system

N−1∑
j=0

(λ− j)kβj = d!δd,k, k = 0, 1, · · · , N − 1, (3.2)

where λ = rd/α, N = p+ d and δd,k is the Kronecker delta having a value of one for k = d and zero otherwise.

Proof. In view of Proposition 2.7, we have G(z) = 1
zαW (e−z) erz = 1 +O(zp). This gives

G(z) =
1

zα

N−1∑
j=0

βje
−jz

α
d

erz =
1

zα

N−1∑
j=0

βje
(rd/α−j)z

α
d

=

 1

zd

N−1∑
j=0

βje
λjz

α
d

=

 1

zd

N−1∑
j=0

βj

∞∑
k=0

1

k!
λkj z

k

α
d

=

(
1

zd

∞∑
k=0

bkz
k

)α
d

=

(
b0
zd

+
b1
zd−1

+ · · ·+ bd−1

z
+ bd +

∞∑
k=d+1

bkz
k−d

)α
d

= 1 +O(zp),

where λj = λ− j, λ = rd
α and

bk =
1

k!

N−1∑
j=0

λkjβj , k = 0, 1, 2, · · · . (3.3)

Since G(z) does not have any pole singularities by virtue of (2.11), we have bk = 0 for k = 0, 1, · · · , d−1. Moreover,
since G(0) = 1, we have bd = 1. These are the consistency conditions for the GTA with generator W (z). Now, for
order p = 1, these conditions give the system (3.2) with N = 1 + d and the proof ends.

For p > 1, G(z) reduces to

G(z) =

(
1 +

∞∑
k=d+1

bkz
k−d

)α
d

=: (1 +X)γ = 1 +O(zp),

where γ = α
d and

X =

∞∑
k=d+1

bkz
k−d. (3.4)

Expansion of (1 +X)γ gives

1 + γX +
γ(γ − 1)

2!
X2 + · · · = 1 +O(zp). (3.5)

The term with z appears in the term γX only on the left-hand side of (3.5). This gives bd+1 = 0. The same is true
for bk, k = d+ 1, d+ 2, · · · , p+ d− 1, by successively comparing the coefficients of zk−d to gain O(zp) in (3.5).

Altogether, we have bk = δd,k, k = 0, 1, 2, · · · , p + d − 1 which yields the linear system (3.2) with (3.3) and
N = p+ d. �

The linear system (3.2) can be expressed in matrix form

V (λ0, λ1, · · · , λN−1)b = d, (3.6)



CMDE Vol. 13, No. 1, 2025, pp. 307-326 313

with b = [β0, β1, · · · , βN−1]
T

, d = [0, 0, · · · , d!, 0, · · · , 0]T , where d! is at the dth position, and the Vandermonde matrix

V ≡ V (λ0, λ1, · · · , λN−1) whose columns are [1, λk, λ
2
k, · · · , λ

N−1
k ]T , k = 0, 1, · · · , N − 1, with its determinant

|V | =
∏

0≤n<m≤N−1

(λm − λn). (3.7)

Our main result is that the coefficients βj , 0 ≤ j < N of b in (3.6) can be explicitly expressed as given in the
following theorem.

Theorem 3.2. Let α > 0, a positive integer d ≥ 1 and f(x) be a sufficiently smooth function such that Dα
x±f(x) is

defined. For a GTA (2.7) for Dα
x±f(x) of order p and shift r with the generator in the form (3.1), the coefficients βj

are given by

βj =
Nj
Dj

, j = 0, 1, · · · , N − 1, (3.8)

where N = p+ d and

Nj =
∑

0≤m1<m2<···<mp−1≤N−1
mi 6=j,1≤i≤p−1

p−1∏
k=0

(λ−mk), Dj =
(−1)d

d!

N−1∏
m=0
m 6=j

(j −m). (3.9)

Moreover, the leading and some successive error coefficients Rm of the approximation are given by

Rm =
α

m!d

N−1∑
j=0

(λ− j)mβj , m = N,N + 1, · · · , N + p. (3.10)

Proof. Solving the Vandermonde system (3.6) by Cramer’s rule, we get

βj =
|Vj(d)|
|V |

, j = 0, 1, · · · , N − 1, (3.11)

where |V | = |V (λ0, λ1, · · · , λN−1)| and Vj(d) is the matrix obtained from V by replacing its jth column with d.
For evaluating the determinant |Vj(d)|, observe that the jth column has only one non-zero entry d! at the dth place.

Hence, pivoting with the jth column, we have |Vj(d)| = (−1)j+d|Vj,d|, where |Vj,d| is the determinant of the matrix
obtained from removing the jth column and dth row from V , and is given by (see Appendix A)

|Vj(d)| = (−1)j+dd!
∏
m>n
m,n 6=j

(λm − λn)Nj .

Rearranging the Vandermonde determinant (3.7) as

|V | =
∏

0≤n<m≤N−1
m,n 6=j

(λm − λn)(−1)j
N−1∏
m=0
m 6=j

(λm − λj),

and substituting in (3.11), we have (3.8) with λm − λj = j −m.
For the leading and subsequent error terms, note that (3.4) is reduced to

X = bNz
p + bN+1z

p+1 + · · ·+ bN+p−1z
2p−1 + · · · .

In (3.5), the terms with zk, k = p, p+ 1, · · · , 2p− 1 appear only in X. Thus, the error coefficients are given by

Rm = γbm =
α

m!d

N−1∑
j=0

(λ− j)mβj , N ≤ m < N + p.

�
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The numerator and denominator terms of the coefficients βj can be easily and efficiently evaluated despite their
complicated expressions. Moreover, for rational parameters of α, p and r, these terms will also be rational numbers.
Therefore, finite difference coefficients for classical derivatives can be evaluated to their exact rational values.

4. Efficient evaluations

We describe the details of evaluating the coefficients of the unified formulation. The denominator and numerator
terms of the coefficients βj are evaluated separately.

Separation of the evaluation of numerators and denominators allows one to implement the explicit expression
efficiently and to express the coefficients in exact fractional form where possible, that is, when λ is an integer or a
rational number.

4.1. Evaluating the denominator. The denominator is evaluated in recursive form for efficient computation as
follows: The denominator of the coefficient βj given in (3.9) can be expressed as

Dj =
(−1)d

d!

N−1∏
m=0

(j −m) =
(−1)p−1−j

d!
j!(N − 1− j)!.

This can be described by the recursive form

D0 =

N−1∏
m=d+1

(−m), Dj =
−j

N − j
Dj−1, j = 1, 2, · · · , N − 1.

Hence, the algorithm for the denominator is as follows:

Algorithm 1. Compute the denominators

(1) Compute D0:
D0 ← −mD0, for m = d+ 1, d+ 2, · · · , N − 1.

(2) Compute Dj :

Dj ← −j
N−jDj−1, for j = 1, 2, · · · , N − 1.

Since the denominator is independent of any shift r and derivative order α, it can be evaluated once and used for
various shifts and order α.

4.2. Evaluating the numerator. An efficient algorithm for evaluating the numerators can be devised once we
identify the sum-product term in (3.9) as elementary symmetric polynomials (ESPs) S(Xj , p− 1) in the set

Xj = {λk = λ− k : 0 ≤ k ≤ N − 1, k 6= j}.
The ESPs can be efficiently computed by the recursive relations described in Appendix B. We use the operations

(B.1) and (B.2) to obtain the required coefficients S(Xj , p− 1), j = 0, 1, · · · , N − 1.
Note that each numerator in βj has the ESP on distinct sets Aj . In fact, S(Xj , p − 1) is the coefficient of

xN−1−(p−1) = xd in the monomial

Mj(x) =

N−1∏
m=0,m 6=j

(x+ xm),

of degree N − 1 that can be expressed in the recursive form

M0(x) =

N−1∏
m=1

(x+ xm), Mj(x) = Mj−1(x)
x+ xj−1

x+ xj
.

The polynomials Mj(x) can be computed by combining the two recurrence relations in (B.1) and (B.2) as follows:
Let

Mj−1(x) =

N−1∑
k=0

pkx
k, Mj(x) =

N−1∑
k=0

qkx
k.
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and denote their coefficient vectors as p and q respectively. Then, the algorithm to compute the numerators is devised
as follows:

Algorithm 2. Computing the numerator terms Nj .

(1) Compute M0(x):
p0 = 1,

For m = 1, 2, · · · , N − 1, with p−1 = 0,

pk ← pk−1 + xmpk, k = m,m− 1, · · · , 0.

N0 = S(X0, p− 1) = pd.
(2) Compute Mj(x) :

For j = 1, 2, · · · , N − 1, with pN = qN = 0,

qk ← pk + xj−1pk+1 − xjqk+1, for k = N − 1, N − 2, · · · , 0.
p← q,

Nj = S(Xj , p− 1) = qd.

4.3. Evaluation of Error. The leading and subsequent error coefficients are evaluated directly as the expression
involves only one summation. From (3.10), we have the following algorithm:

Algorithm 3. Computing the error coefficient of order m, p ≤ m ≤ 2p.
Given βj = Nj/Dj for j = 0, 1, · · · , N − 1,

(1) E ← 0,

For j = 0, 1, · · · , N − 1, E ← E + λm+d
j βj ,

(2) Rm ← α
(m+d)!dE.

4.4. Operation count. The direct evaluation of the numerator part in (3.9) computes the sum-product form with
all possible combinations. The operation counts for computing the numerator part with base differential order d and
approximation order p is MN additions and MN(p− 1) multiplications, where M =

(
N−1
p−1

)
and N = p+ d. For small

values of N , this count is reasonably small. However, for large N , the operation count uncontrollably increases. For
example, the number of additions and multiplications for computing the numerator for a 10-th order derivative with
approximation order 10 are 1847560 and 16628040 respectively.

However, the efficient computation described above computes the same numerator in only 968 additions and the
same amount of multiplications.

5. Difference formulas

We use the unified explicit form in this paper to construct approximating Lubich-type generators with a given base
differential order for the left and right fractional derivatives along with their leading error coefficients. We also list
some FDFs of various types that can be constructed from the unified formulation.

5.1. Difference approximations for fractional derivatives. When the base differential operator is the first de-
rivative operator D = d/dx with base differential order d = 1, we obtain the Lubich-type generators obtained in [22]
with shift r and are given in Table 2. When there is no shift (r = 0), this gives the Lubich generators in Table 1.
Hence, our unified formulation is a further generalization of the Lubich-type generators and the Lubich generators for
the approximation of fractional derivatives with and without shifts respectively.

When the base differential operator is of order d > 1, we get new approximating generators. Tables 3 and 4
list some approximating generators with base differential orders d = 2 and 3 respectively and approximation orders
p = 1, 2, 3, 4, 5. Note that the first order approximations in all cases turn out to be the same Grünwald generator
W1(z) = (1− z)α.
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Table 3. Coefficients for polynomial p(z) = β0 + β1z + · + βp+d−1z
p+d−1 for generator Wp,d(z) =

(p(z))α/d with base differential order d = 2 and λ = rd/α.

p Coefficients βj , 0 ≤ j ≤ p+ d− 1 with d = 2 and λ = rd/α

1 β0 = 1 β1 = −2
β2 = 1

2 β0 = −λ+ 2 β1 = 3λ− 5
β2 = −3λ+ 4 β3 = λ− 1

3 β0 = λ2

2 −
5λ
2 + 35

12 β1 = −2λ2 + 9λ− 26
3

β2 = 3λ2 − 12λ+ 19
2 β3 = −2λ2 + 7λ− 14

3

β4 = λ2

2 −
3λ
2 + 11

12

4 β0 = −λ
3

6 + 3λ2

2 −
17λ
4 + 15

4 β1 = 5λ3

6 − 7λ2 + 71λ
4 −

77
6

β2 = − 5λ3

3 + 13λ2 − 59λ
2 + 107

6 β3 = 5λ3

3 − 12λ2 + 49λ
2 − 13

β4 = − 5λ3

6 + 11λ2

2 − 41λ
4 + 61

12 β5 = λ3

6 − λ
2 + 7λ

4 −
5
6

5 β0 = λ4

24 −
7λ3

12 + 35λ2

12 −
49λ
8 + 203

45 β1 = −λ
4

4 + 10λ3

3 − 31λ2

2 + 29λ− 87
5

β2 = 5λ4

8 −
95λ3

12 + 137λ2

4 − 461λ
8 + 117

4 β3 = − 5λ4

6 + 10λ3 − 121λ2

3 + 62λ− 254
9

β4 = 5λ4

8 −
85λ3

12 + 107λ2

4 − 307λ
8 + 33

2 β5 = −λ
4

4 + 8λ3

3 −
19λ2

2 + 13λ− 27
5

β6 = λ4

24 −
5λ3

12 + 17λ2

12 −
15λ
8 + 137

180

The coefficients wk of the generators can be computed from the J.C.P. Miller formula given as follows (see [29] for
a proof):

W (z) =

N−1∑
j=0

βjz
j

γ

=

∞∑
k=0

wkz
k,

w0 = βγ0 , wm =
1

mw0

M∑
k=1

(k(γ + 1)−m)βkwm−k, m = 1, 2, · · · , (5.1)

where M = min (m,N − 1).
The Grünwald type approximation for the left or right fractional derivative is then given by (2.7).

5.2. Finite difference formulas. The FDFs for classical derivatives come in various shapes and flavors. Forward,
backward, and central finite differences are well-known. There are also finite difference forms that give derivatives at
any specified grid point. We call them shifted finite difference forms. In addition, there are finite difference forms
that give derivatives at a point between two adjacent points. These are called staggered finite difference forms. There
are compact finite difference forms that use the minimum number of grid points for a specified order of accuracy. In
contrast, there are also non-compact finite difference forms.

Our proposed algorithm gives all these forms for specified choices of input parameters of d, p, and r. In the following,
we list the input parameters and their output finite difference forms in some detail.

5.3. Compact finite difference forms. Compact finite difference forms are those that use the minimum number of
grid points for a specified derivative order and order of approximation and are commonly used in applications. There
are known as compact finite difference forms such as forward (right), backward (left), and central (symmetric). There
are also other compact forms in shifted and staggered formulations. The presented algorithm gives all these forms.

In the presented algorithm, the input parameters for compact finite difference forms for a classical derivative α
are chosen to be equal to the base order d. The required order of approximation can be independently chosen. The
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Table 4. Coefficients for polynomial p(z) = β0 + β1z + · + βp+d−1z
p+d−1 for generator Wp,d(z) =

(p(z))α/d with base differential order d = 3 and λ = rd/α.

p Coefficients βj , 0 ≤ j ≤ p+ d− 1 with d = 3 and λ = rd/α

1 β0 = 1 β1 = −3
β2 = 3 β3 = −1

2 β0 = −λ+ 5
2 β1 = 4λ− 9

β2 = −6λ+ 12 β3 = 4λ− 7
β4 = −λ+ 3

2

3 β0 = λ2

2 − 3λ+ 17
4 β1 = − 5λ2

2 + 14λ− 71
4

β2 = 5λ2 − 26λ+ 59
2 β3 = −5λ2 + 24λ− 49

2

β4 = 5λ2

2 − 11λ+ 41
4 3 β5 = −λ

2

2 + 2λ− 7
4

4 β0 = −λ
3

6 + 7λ2

4 −
35λ
6 + 49

8 β1 = λ3 − 10λ2 + 31λ− 29

β2 = − 5λ3

2 + 95λ2

4 − 137λ
2 + 461

8 β3 = 10λ3

3 − 30λ2 + 242λ
3 − 62

β4 = − 5λ3

2 + 85λ2

4 − 107λ
2 + 307

8 β5 = λ3 − 8λ2 + 19λ− 13

β6 = −λ
3

6 + 5λ2

4 −
17λ
6 + 15

8

5 β0 = λ4

24 −
2λ3

3 + 23λ2

6 − 28λ
3 + 967

120 β1 = − 7λ4

24 + 9λ3

2 −
295λ2

12 + 111λ
2 − 638

15

β2 = 7λ4

8 − 13λ3 + 135λ2

2 − 142λ+ 3929
40 β3 = − 35λ4

24 + 125λ3

6 − 1235λ2

12 + 1219λ
6 − 389

3

β4 = 35λ4

24 − 20λ3 + 565λ2

6 − 176λ+ 2545
24 β5 = − 7λ4

8 + 23λ3

2 − 207λ2

4 + 185λ
2 − 268

5

β6 = 7λ4

24 −
11λ3

3 + 95λ2

6 − 82λ
3 + 1849

120 β7 = −λ
4

24 + λ3

2 −
25λ2

12 + 7λ
2 −

29
15

Table 5. Choice of shift parameters for compact finite difference forms.

α = d Left Right Central Shifted Staggered
Shift r 0 p+ d− 1 (p+ d− 1)/2 any int any real

number of grid points for all the compact finite difference forms for a differential order d and approximation order p
is N = p+ d. All the different forms are obtained through the choice of the shift parameter r as given in Table 5.

Table 6 lists some compact finite difference forms with one example of each kind mentioned above. The coefficient
of the function at the point where the derivative is intended is indicated within parentheses. This is given by the index
c = r− [r] = the fractional part of r. The finite difference summation formula starts with function index r, (that is fr
) from the leftmost coefficient and decrements by one for each subsequent coefficient. The sum is then divided by hα.

The error term takes the leading error coefficient from the explicit form for the error multiplied by hpf (p)(ξ), where
ξ is a point between the grid points.

For example, the central compact finite difference form for the derivative of order α = 3 with base d = 3 and
approximation order p = 4 and shift r = 3 in Table 6 is read as

d3

dx3
f0 =

1

h3

(
−1

8
f3 + f2 −

13

8
f1 +

13

8
f−1 − f−2 +

1

8
f−3

)
− 7

120
h4f (4)(ξ),

where fk = f(xc + kh) and c is the fractional part of r.
Note that 0 ≤ c < 1 with non-zero value for non-integer shift r – the staggered case and zero for integer shifts.

Thus, the last row of Table 6 is read as

d2

dx2
f0.5 =

1

h2

(
3

16
f1.5 +

41

48
f0.5 −

67

24
f−1.5 +

19

8
f−2.5 −

35

48
f−3.5 +

5

48
f−4.5

)
+

341

5760
h4f (4)(ξ).
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Table 6. Some Compact finite difference forms.

d α p r Coefficients for Compact forms Error Names

1 1 3 0 ( 11
6 ),−3, 3

2 ,−
1
3 − 1

4 Left

3 3 4 3 − 1
8 , 1,−

13
8 , (0), 13

8 ,−1, 1
8

−7
120 Central

2 2 4 1 5
6 , (−

5
4 ),− 1

3 ,
7
6 ,−

1
2 ,

1
12

13
180 Shifted

3 3 4 6 − 15
8 , 13,− 307

8 , 62,− 461
8 , 29, (− 49

8 ) − 29
15 Right

2 2 4 1.5 3
16 , (

41
48 ),− 67

24 ,
19
8 ,−

35
48 ,

5
48

341
5760 Staggered

5.4. Non-compact finite difference forms. In contrast to the compact finite difference forms, non-compact finite
difference forms use more grid points than that of compact forms. All the various finite difference forms described in
compact forms are also available in the non-compact forms with the same choices of the shift r.

The non-compact finite difference forms are obtained by choosing the base order d such that α = γd for some

integer γ > 1. The coefficients βj for the polynomial p(z) =
∑p+d−1
j=0 βjz

j are first computed by using the unified

explicit form in (3.9). The generator for the non-compact form is then given by W (z) = (p(z))γ and is expanded to
obtain the non-compact coefficients. The expansion can be performed by the J. C. P. Miller recurrence formula as was
done in the fractional derivative case.

For example, the non-compact finite difference formula for the second derivative (α = 2) of approximation order
p = 3 with d = 1 6= α and shift r = 1 has the coefficients and leading error coefficient computed from the unified
formulation as

{βk} =

(
23

24
,−7

8
,−1

8
,

1

24

)
, R3 =

1

12
,

respectively. Therefore, the generator for the approximate formula is given with power γ = α/d = 2 as

W (z) =

(
23

24
− 7

8
z − 1

8
z2 +

1

24
z3

)2

=
529

576
− 161

96
z +

101

192
z2 +

43

144
z3 − 11

192
z4 − 1

96
z5 +

1

576
z6.

Hence, the non-compact finite difference formula with its error term is given by

d2

dx2
f0 =

1

h2

(
529

576
f1 −

161

96
f0 +

101

192
f−1

+
43

144
f−2 −

11

192
f−3 −

1

96
f−4 +

1

576
f−5

)
+

1

12
h3f (3)(ξ).

6. Numerical tests

In order to demonstrate the usefulness of the presented unified explicit formulation, we present here some numerical
examples. Analyses of these applications are beyond the scope of this paper and will be considered in the future.

6.1. Boundary value problem. Consider the boundary value problem:

d2

dx2
u(x) = f(x), a ≤ x ≤ b, u(a) = ua, u(b) = ub. (6.1)
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Consider the computational domain [a, b]h = {xi = a + ih}N−1
i=0 with uniform discretization of the domain [a, b]

with subinterval size h = (b− a)/(N − 1). Usually, the second derivative is approximated by the second-order central
difference formula for each internal point. That is, with ui = u(xi) and fi = f(xi),

d2

dx2
u(xi) = f(xi), i = 1, 2, · · · , N − 2, (6.2)

is approximated by

1

h2
(ui−1 − 2ui + ui+1) = fi +O(h2), i = 1, 2, · · · , N − 2. (6.3)

The resulting tridiagonal matrix equation is solved, after imposing the boundary conditions, for the discrete solution
ui which approximates u(xi) with O(h2) error.

Now that we have the explicit form (3.8) for any order of approximation p with N = p + d, we may approximate
(6.2) by a higher order approximation through (2.7). Since α = 2 , we choose d = 2, so that α/d = 1 and the resulting
finite difference formulas with shifts are compact and can be computed for each shift r from (3.1),

W (z) = β0 + β1z + · · ·+ βN−1z
N−1, (6.4)

where βj = βj(r), j = 0, 1, · · · , N − 1. Each equation in (6.2) is approximated by (6.4) with shift r = i.

1

h2

N−1∑
j=0

βj(i)uj = fi +O(hN−d), i = 1, 2, · · · , N − 2. (6.5)

Note that the order of this approximation is p = N − d and hence, the higher the number of nodes, the higher the
order of approximation. The matrix form of this system is given by BU = F , where we denote the approximation of

uk as ûk, U = [û0, û1, · · · , ûN−1]
T

, F = [f1, f2, · · · , fN−2]
T

, and the matrix B is given by

Bi,j = βj(i), i = 1, 2, · · · , N − 2, j = 0, 1, · · · , N − 1.

The entries of the matrix B are given by (3.8) and are automatically computed by the algorithms for βj . Imposing
boundary conditions, the system reduces to

B̂Û = F −B0u0 −BN−1uN−1, (6.6)

where B̂ = [B1, B2, · · · , BN−2], Bk, 1 ≤ k ≤ N − 2, are the internal columns of B and Û = [û1, û2, · · · , ûN−2]
T

.
Solving (6.6) yields the approximate solution.

Example 6.1. We apply the above numerical schemes to the following boundary value problem:

d2

dx2
u(x) = − sin(x), −1 < x < 1, (6.7)

u(−1) = sin(−1), u(1) = sin(1).

for which the exact solution is u(x) = sin(x).

In order to compare and see the effectiveness of the automation and accuracy of the unified explicit form, the
problem is solved first by using the well-known central difference formula of order 2 for the second derivative and then
by using the highest-order compact finite difference formulas that use the full set of nodal values of the solution vector.

Table 7 shows the maximum absolute errors for the central difference method (6.3) and the proposed method in
(6.5). As the order of the proposed method increases with the size of the discrete domain, precision errors occur for
higher order approximations as the accuracy of the solution surpasses the machine precision–see orders 30, 62, and 126
in Table 7. In order to make sure that these errors are indeed due to accuracy overwhelming the machine precision, we
computed the same methods with high precision arithmetic with 300 decimal digits accuracy. In this case, the errors
disappear and the absolute maximum errors continue to reduce.
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Table 7. Example 6.1: Order 2 Central difference and the proposed method.

Step size Order 2 Proposed Higher Order formulas
N − 1 h Central Order Prec. 15 digits Prec. 300 digits
4 0.5 2.3370e-01 3 0.00123815 0.00123815
8 0.25 5.3029e-02 7 1.85125e-07 1.85125e-07
16 0.125 1.2951e-02 15 5.55112e-15 2.02095e-17
32 0.0625 3.2190e-03 31 4.71049 7.17654e-42
64 0.03125 8.0358e-04 63 (Precision error) 4.76176e-100
128 0.015625 2.0082e-04 127 (Precision error) 2.71135e-235

Table 8. Maximum errors and convergence orders for Example 6.2 using the unified explicit formula
with d = 2, p = 2.

α = 1.33 α = 1.34 α = 1.6
N Error Order Error Order Error Order
8 2.7809e-02 – 2.7809e-02 – 1.7798e-02 –
16 6.1767e-03 2.1707e+00 5.7018e-03 2.1871e+00 4.4935e-03 7.0856e-05
32 1.4568e-03 2.0840e+00 1.3175e-03 2.1136e+00 1.1292e-03 1.9925e+00
64 3.5663e-04 2.0303e+00 3.1401e-04 2.0690e+00 2.8309e-04 1.9960e+00
128 9.3875e-05 1.9256e+00 7.6700e-05 2.0335e+00 7.0856e-05 1.9983e+00
256 5.7965e-05 6.9557e-01 1.9031e-05 2.0109e+00 1.7725e-05 1.9991e+00
512 1.6220e-05 1.8374e+00 4.7521e-06 2.0017e+00 4.4327e-06 1.9996e+00
1024 3.7781e-06 2.1021e+00 1.1880e-06 2.0001e+00 1.1083e-06 1.9998e+00
2048 1.3291e-06 1.5072e+00 2.9696e-07 2.0002e+00 2.7710e-07 1.9999e+00
4096 1.8479e+05 -3.7017e+01 7.4056e-08 2.0036e+00 6.9267e-08 2.0002e+00

Although we solve the resulting matrix equation by the standard classical solvers, the solution process may be
efficiently performed seeing that matrix B has a centro-symmetric structure. This has not been considered here and
is thus open.

6.2. Fractional boundary value problem. The use of the difference approximations for fractional derivatives is an
ongoing research. Therefore, the use of the unified explicit formulation is yet to be explored. Nevertheless, we present
here a simple example of a fractional boundary value problem that uses the difference formula with base differential
order d = 2.

Example 6.2. Consider the fractional boundary value problem

CDα
x−y(x) =

Γ(4 + x)

6
x3, 0 < x < 1, 1 < α < 2, (6.8)

u(0) = 0, u(1) = 1.

The exact solution is y(x) = x3+α.
The domain [0, 1] is discretized with points xj = jh, j = 0, 1, · · · , N and the fractional derivative is approximated

by the order p = 2 approximation with base order d = 2 and shift r = 1 from Table 3. The weights wk are computed
by using the J.C.P. Miller formula in (5.1). The resulting system

BY = F,

is solved after imposing the boundary conditions.
Table 8 lists the maximum errors and the computed convergence orders for α = 1.33, 1.34, 1.6. Note that the

computed convergence order for α = 1.33 is not up to the theoretical order 2.
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The order 2 accuracy is obtained for α > 4/3 and has been confirmed by numerical tests with more α values. This
can be justified by the convergence of the series of the generator as follows. The generator W2,2(z) for p = 2, d = 2 is
given by (see Table 3)

W2,2(z) = (β0 + β1z + β2z
2 + β3z

3)α/2 = (1− z)α(β0 + β3z)
α/2,

where β0 = 2 − λ, β1 = −5 + 3λ, β2 = 4 − 3λ, β3 = −1 + λ with λ = rd/α = 2r/α. The series expansion of W2,2(z)

converges when the series of both factors (1− z)α and (β0 +β3z)
α/2 converge – that is, when |z| ≤ 1 and |β3/β0z| < 1.

These give |β3/β0| < 1 and resolve to 4r/3 < α. Moreover, for real-valued expansion of the second factor, it requires
β0 > 0 which leads to r < α. For r = 1, it follows that α > 4/3.

6.3. Fractional initial value problem. We present an example to demonstrate an advantage of the new Grünwald
type formulation in the stability of the fractional backward difference formula (FDBF) methods for solving the frac-
tional initial value problems (FIVP).

Consider the FIVP

CDα
t−y(t) = f(y, y(t)), t ≥ 0, n− 1 < α < n, (6.9)

y(0) = y′(0) = · · · = y(n−1)(0) = 0, (6.10)

where n = [α] + 1, often n = 1 or 2, the fractional derivative is in the Caputo sense which is equivalent to the R-L
fractional derivative owing to the homogeneous initial conditions.

For a uniform discretization tj = τj, j = 0, 1, · · · , N of the time domain [0, T ] with τ = T/N , the fractional
derivative is approximated by a left Grünwald type approximation through a generator W (z) at t = tn resulting in
the implicit FBDF

1

τα

∞∑
k=0

w
(α)
k yn−k = fn, (6.11)

where yn is an approximation of y(tn), fn = f(tn, yn) with the assumption yk = 0 for k ≤ 0.
For the stability of the FBDFs, we apply the scheme (6.11) to the problem (6.9) with f(t, y) = λy, where λ ∈ C.
The stability region for the implicit FBDF is given by

S = {W (ξ) : |ξ| ≥ 1}.
The readers are directed to [17], [8] for more information on FBDF and its stability.

Now, we consider two second-order GTAs to compare their stabilities: One is from the Lubich generator W2(z)
given in Table 1 which can also be obtained from the proposed unified formulation with d = 1 and r = 0. For the
other, we consider a new generator W2,2(z) obtained from the unified formulation from Table 3 with d = 2 and r = 0.
They are respectively given by

W2(z) =

(
3

2
− 2z +

1

2
z2

)α
and W2,2(z) = (2− 5z + 4z2 − z3)

α
2 .

The stability regions for these methods are shown in Figures 1 and 2 with the same axes scales for some values of
fractional order 0 < α < 1 and 1 < α < 2 respectively. The stable regions are outside of the closed regions for each α
value.

It can be seen from the figures that the FBDF corresponding to the new generator with d = 2 has smaller unstable
regions compared to its Lubich counterpart. This shows an improvement in the stability region of the new FBDF
method.

7. Conclusion

A unified explicit form for the difference formulas for classical and fractional order derivatives was presented. This
formulation gives various finite difference formulas such as left, right, central, shifted, compact, and staggered finite
difference formulas of an arbitrary order for classical derivatives. The formulation also gives Grünwald type difference
approximation of any order for fractional derivatives.
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Figure 1. Stability regions for W2(z),W2,2(z) with 0 < α < 1.

Figure 2. Stability regions for W2(z),W2,2(z) with 1 < α < 2.

From this unified formulation, some new types of difference formulas for fractional derivatives were also obtained.
Basic examples of applications were presented to demonstrate the effect of these difference formulas for classical

and fractional boundary and initial value problems. More properties, analyses, and applications of these formulas are
open for research.

We believe that the unified explicit formula will contribute to the automation of the solution process of differential
problems with minimal manual intervention.

Appendix A. Vandemonde type Determinants

In this appendix, we establish the determinant of the matrix obtained in section 3.

Lemma A.1. It is known that, for a finite sequence of q + 1 parameters x0, x1, · · · , xq, the determinant of the
Vandermonde matrix V (x0, x1, · · · , xq) of size (q + 1) is given by

|V | = |V (x0, x1, · · · , xq)| =

∣∣∣∣∣∣∣∣∣∣
1 1 1 · · · 1
x0 x1 x2 · · · xq
x2

0 x2
1 x2

2 · · · x2
q

· · · · · · · · · · · · · · ·
xq0 xq1 xq2 · · · xqq

∣∣∣∣∣∣∣∣∣∣
=

∏
0≤i<j≤q

(xj − xi).
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Lemma A.2. Let a variant of the Vandermonde matrix with q + 1 parameters be defined as

Uk(x0, x1, · · · , xq) =



1 1 · · · 1
x0 x1 · · · xq
x2

0 x2
1 · · · x2

q

· · · · · · · · · · · ·
xk−1

0 xk−1
1 · · · xk−1

q

xk+1
0 xk+1

1 · · · xk+1
q

· · · · · · · · · · · ·
xq+1

0 xq+1
1 · · · xq+1

q


,

where, from the k-th row onward, the powers of the parameters are increased by one. Then, the determinant of Uk,
which is of size (q + 1), is given by

|Uk| =
∏

0≤i<j≤q

(xj − xi)

(∑
σ∈B

∏
l∈σ

xl

)
= |V |

(∑
σ∈B

∏
l∈σ

xl

)
, (A.1)

where B is the set of all combinations of q + 1 − k elements chosen from the index set A = {0, 1, 2, · · · , q} given by
B = {σ = (m1,m2, · · · ,mq+1−k) : mk ∈ A}.

Proof. It is clear that |Uk| is a homogeneous polynomial of total degree 1 + 2 + · · ·+ (k− 1) + (k+ 1) + · · ·+ (q+ 1) =
(q + 1)(q + 2)/2− k. Moreover, for i 6= j, by replacing xi with xj , we have |Uk| = 0 and thus (xi − xj) are factors of
|Uk|. There are q(q + 1)/2 such factors as in the Vandermonde determinant |V |. Hence,

|Uk| =
∏

0≤i<j≤q

(xj − xi)P (x0, x1, · · · , xq),

where P is a homogeneous polynomial of total degree (q + 1)(q + 2)/2− k − q(q + 1)/2 = q + 1− k.

Since there are q+1 parameters, P will have

(
q + 1

q + 1− k

)
terms of products of combinations of q+1−k elements

chosen from the q + 1 parameters. Thus, P has the form

P = C

(∑
σ∈A

∏
l∈σ

xl

)
.

The homogeneity of P forces the constant coefficients of the product terms to be the same. Equating one of the terms
of |Uk|, we see that C = 1. �

Lemma A.3. The determinant |Vj(b)| in (3.11) of Theorem 3.2 is given by

|Vj(d)| = (−1)j+dd!
∏
m>n
m,n6=j

(λm − λn)Nj ,

where Nj is given in (3.9).

Proof. Since the matrix Vj(d) is obtained from the Vandermonde matrix V by replacing the jth column by the vector
d, the parameter λj is removed from the list {λ0, λ2, · · · , λN−1}. Performing the determinant evaluation with the jth
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column, we have

|Vj(d)| = (−1)j+dd!

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 · · · 1
λ0 λ1 · · · λq
λ2

0 λ2
1 · · · λ2

q

· · · · · · · · · · · ·
λd−1

0 λd−1
1 · · · λd−1

q

λd+1
0 λd+1

1 · · · λd+1
q

· · · · · · · · · · · ·
λq+1

0 λq+1
1 · · · λq+1

q

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

The determinant is in the form of the variant determinant in Lemma 2. Hence, we have

|Vj(d)| = (−1)j+dd!|V |

(∑
σ∈B

∏
l∈σ

λl

)

= (−1)j+dd!|V |
∑

0≤m1<m2<···<mp−1≤N−1
mi 6=j,1≤i≤p−1

p−1∏
k=0

λmk ,

where σ are the combinations of N − 1 − d = p − 1 elements from the N − 1 parameter set Aj = {λm : 0 ≤ m ≤
N − 1} \ {λj}.

Now, the last sum-product term is Nj and |V | =
∏

m>n
m,n 6=j

(λm − λn) ends the proof. �

Appendix B. Elementary symmetric polynomials

The elementary symmetric polynomials on a finite set X of parameters are defined as follows:

Definition B.1. Let X = {x0, x1, · · · , xN−1} be a set of N parameters and Bk be the set of all combinations σ of k
parameters chosen from X. Then

S(X, k) =
∑
σ∈Bk

∏
l∈σ

xl =
∑

0≤i1<i2<···<ik≤N−1

xi1xi2 · · ·xik .

It is interesting to note that the monomial

L(x) =

N−1∏
k=0

(x+ xk),

has the expanded form given by

L(x) =

N∑
k=0

S(X, k)xN−k,

with S(X, 0) = 1. The elementary symmetric polynomials can thus be obtained from the coefficients of powers of the
expanded L(x).

The product in L(x) can be performed recursively by multiplying the factors (x+ xk) successively as follows:

(1) Let L−1(x) = 1.
(2) Define Lk(x) = Lk−1(x)(x+ xk), k = 0, 1, · · · , N − 1.
(3) If Lk−1(x) = p0 + p1x+ · · ·+ pk−1x

k−1 and Lk(x) = q0 + q1x+ · · ·+ qkx
k, then, by setting p−1 = pk = 0, the

coefficients qm are related by

qm = pm−1 + xkpm, m = 0, 1, 2 · · · , k. (B.1)
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Conversely, one can obtain Lk−1(x) from Lk(x) through

pm−1 = qm − xkpm, m = k, k − 1, · · · , 2, 1, 0, (B.2)

where q−1 is the remainder when dividing Lk(x) by (x+ xk) which is zero since (x+ xk) is a factor of Lk(x). Hence,
the recursion can be computed only for m = k, k − 1, · · · , 2, 1.
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