- [1] K. G. Ali and J. F. Gomez-Aguilar, Approximation of partial integro differential equations with a weakly singular kernel using local meshless method, Alex. Eng. J., 59 (2020), 2091–2100.
- [2] S. Abbasbandy, S. Kazemb, M. S. Alhuthalic, and H. H. Alsulami, Application of the operational matrix of fractional-order Legendre functions for solving the time-fractional convection-diffusion equation, Appl. Math. Comput., 266 (2015), 31–40.
- [3] Z. Avazzadeh, M. H. Heydari, and C. Cattani, Legendre wavelets for fractional partial integro-differential viscoelastic equations with weakly singular kernels, Eur. Phys. J. Plus., 134 (2019), 368.
- [4] M. S. Barikbin, Modified simple equation method (MSEM) for solving nonlinear (3+1) space-time fractional equations, Comput. methods differ. equ., (2023),
- [5] S. Behera and S. Saha Ray, An operational matrix based scheme for numerical solutions of nonlinear weakly singular partial integro-differential equations, Appl. Math. Comput., 367 (2020), 124771.
- [6] S. Bonyadi, Y. Mahmoudi, M. Lakestani, and M. Jahangiri Rad, Numerical solution of space-time fractional PDEs with variable coefficients using shifted Jacobi collocation method, Comput. methods differ. equ., 11(1), (2023), 81–94.
- [7] R. M. Christensen, Theory of Viscoelasticity, (Academic Press, New York), 378, 1982.
- [8] H. Dehestani, Y. Ordokhani, and M. Razzaghi, Fractional-order Legendre–Laguerre functions and their applications in fractional partial differential equations, Appl. Math. Comput., 336 (2018), 433–453.
- [9] H. Dehestani, Y. Ordokhani, and M. Razzaghi, Fractional-order Bessel functions with various applications, Appl. Math., 64(6) (2019), 637–662.
- [10] H. Dehestani, Y. Ordokhani, and M. Razzaghi, Application of fractional Gegenbauer functions in variable-order fractional delay-type equations with non-singular kernel derivatives, Chaos Solitons Fractals, 140 (2020), 110111.
- [11] H. Dehestani, Y. Ordokhani, and M. Razzaghi, An improved numerical technique for distributed-order timefractional diffusion equations, Numer. Methods Partial Differential Eq., 37(3) (2021), 2490–2510.
- [12] H. Dehestani, Y. Ordokhani, and M. Razzaghi, Pseudo-operational matrix method for the solution of variable-order fractional partial integro-differential equations, Eng. Comput., 37 (2021), 1791–1806.
- [13] H. Dehestani, Y. Ordokhani, and M. Razzaghi, Fractional-Lucas optimization method for evaluating the approximate solution of the multi-dimensional fractional differential equations, Eng. Comput., 38 (2022), 481–495.
- [14] M. E. Gurtin and A. C. Pipkin, A general theory of heat conduction with finite wave speeds, Arch. Ration. Mech. Anal., 31 (1968), 113.
- [15] M. H. Heydari, A new direct method based on the Chebyshev cardinal functions for variable-order fractional optimal control problems, J. Franklin Inst., 355(12) (2018), 4970–4995.
- [16] A. A. Kilbas, H. M. Srivastava, and J. J. Trujillo, Theory and applications of the fractional differential equations, Mathematical Studies, 204, Elsevier, Amsterdam, 2006.
- [17] O. K. Kurkcu, A numerical method with a control parameter for integro-differential delay equations with state-dependent bounds via generalized Mott polynomial, Math. Sci., 14 (2020), 43–52.
- [18] D. Kumar, J. Singh, S. D. Purohit, and R. Swroop, A hybrid analytical algorithm for nonlinear fractional wave-like equations, Math. Model. Nat. Phenom., 14(3) (2019), 304.
- [19] R. K. Maurya, V. Devi, N. Srivastava, and V. K. Singh, An efficient and stable Lagrangian matrix approach to Abel integral and integro-differential equations, Appl. Math. Comput., 374 (2020), 125005.
- [20] R. K. Miller, An integro-differential equation for rigid heat conductors with memory, J. Math. Anal. Appl., 66 (1978), 313.
- [21] F. Mirzaee, S. Alipour, and N. Samadyar, A numerical approach for solving weakly singular partial integrodifferential equations via two-dimensional-orthonormal Bernstein polynomials with the convergence analysis, Numer. Methods Partial Differential Eq., 35(2) (2018), 615–637.
- [22] J. Mohapatra and S. Natesan, Parameter-uniform numerical methods for singularly perturbed mixed boundary value problems using grid equidistribution, J. Appl. Math. Comput., 37(1) (2011), 247–265.
- [23] A. Mohebbi, Compact finite difference scheme for the solution of a time fractional partial integro-differential equation with a weakly singular kernel, Math. Meth. Appl. Sci., 40(18) (2017), 7627–7639.
- [24] A. Panda, J. Mohapatra, and I. Amirali, A second-order post-processing technique for singularly perturbed Volterra integro-differential equations, Mediterr. J. Math., 18 (2021), 231.
- [25] A. Panda, S. Santra, and J. Mohapatra, Adomian decomposition and homotopy perturbation method for the solution of time fractional partial integro-differential equations, J. Appl. Math. Comput., 68 (2022), 2065–2082.
- [26] I. Podlubny, Fractional differential equations, Academic Press, NewYork, 1999.
- [27] E. D. Rainville, Special Functions, The Macmillan Company, New York, 1960.
- [28] P. Rajput, N. Srivastava, and V. K. Singh, A high order numerical method for the variable order time-fractional reaction-subdiffusion equation, Chi. J. Phys., 85, (2023), 431–444.
- [29] N. R. Reddy and J. Mohapatra, An efficient numerical method for singularly perturbed two point boundary value problems exhibiting boundary layers, Natl. Acad. Sci. Lett., 38(4) (2015), 355–359.
- [30] M. Renardy, Mathematical analysis of viscoelastic ows, Annu. Rev. Fluid Mech., 21(1) (1989), 21–34.
- [31] S. R. Sahu and J. Mohapatra, Numerical investigation of time delay parabolic differential equation involving two small parameters, Eng. Comput., 38(6) (2021), 2882–2899.
- [32] S. Santra and J. Mohapatra, Numerical analysis of Volterra integro-differential equations with Caputo fractional derivative, Iran J. Sci. Technol. Trans. Sci., 45 (2021), 1815–1824.
- [33] S. Santra and J. Mohapatra, A novel finite difference technique with error estimate for time fractional partial integro-differential equation of Volterra type, J. Comput. Appl. Math., 400 (2022), 113746.
- [34] Z. Shafinejhad and M. Zarebnia, Numerical Solution of Fractional Volterra Integro-Differential Equations Using Flatlet Oblique Multiwavelets, Comput. methods differ. equ., (2023).
- [35] A. Singh, N. Srivastava, S. Singh, and V. K. Singh, Computational technique for multi-dimensional non-linear weakly singular fractional integro-differential equation, Chi. J. Phys., 80 (2022), 305–333.
- [36] S. Singh, V. K. Patel and V. K. Singh, Convergence rate of collocation method based on wavelet for nonlinear weakly singular partial integro-differential equation arising from viscoelasticity, Numer. Methods Partial Differential Eq., 34(5) (2018), 1781–1798.
- [37] N. Srivastava, A. Singh, and V. K. Singh, Computational algorithm for financial mathematical model based on European option, Math. Sci., 17 (2023), 467–490.
- [38] J. Tang and D. Xu, The global behavior of finite difference-spatial spectral collocation methods for a partial integro-differential equation with a weakly singular kernel, Numer. Math. Theor. Meth. Appl. SIAM, 6(3) (2013), 556–570.
- [39] S. Zaeri, H. Saeedi, and M. Izadi, Fractional integration operator for numerical solution of the integro-partial time fractional diffusion heat equation with weakly singular kernel, Asian Eur. J. Math., 10(4) (2017), 1750071.
|