Research Paper C
Computational Methods for Differential Equations

http://cmde.tabrizu.ac.ir
Vol. 12, No. 4, 2024, pp. 808-826

DOI:10.22034/cmde.2024.57684.2418

Higher-order multi-step Runge-Kutta-Nystrom methods with frequency-dependent coefficients
for second-order initial value problem " = f(z,u,u’)

Athraa Abdulsalam!2, Norazak Senu?3:*, Zanariah Abdul Majid?:3, and Nik Mohd Asri Nik Long?23
!Department of Mathematics and Computer Applications, College of Sciences, Al-Nahrain University, Jadriya, Baghdad, Iraq.
2Institute for Mathematical Research, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia.

3Department of Mathematics and Statistics, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia.

Abstract f ]
In this study, for the numerical solution of general second-order ordinary differential equations (ODEs) that exhibit
oscillatory or periodic behavior, fifth- and sixth-order explicit multi-step Runge-Kutta-Nystrom (MSGRKN)
methods, respectively, are constructed. The parameters of the proposed methods rely on the frequency w of each
problem whose solution is a linear combination of functions {e(??®) — e(=w)} or {cos(wz), sin(wz)}. The
study also includes an analysis of the linear stability of the suggested methods. The numerical results indicate
the efficiency of the proposed methods in solving such problems compared to methods with similar characteristics

in the literature.
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1. INTRODUCTION

Many physical phenomena in the applied sciences, such as problems of orbital dynamics, control theory, chemical
kinetics, and electric circuits, can be modeled as second-order differential equations. In this article, we look at a
second-order initial value problem (IVP) of the model given below and its numerical solution:

v = f(z,u,v'), z€la,b], (1.1)

u(a) =a, u'(a) =4,

for which its solution has an oscillating behavior, where u(z) € R™, f(x,u,u) : [a,b] x R™ x R™ — R™ is a
continuous vector function. The periodic or oscillatory solution property of Eq. (1.1) has not been taken into account
by many Runge-Kutta or -Nystrom (RK) or (RKN) methods in the literature, which is why they often provide
unsatisfactory numerical results. Several attempts have been made to adapt RK or RKN methods by including the
oscillatory structure in their formulations. The techniques of exponential (or trigonometric) fitting introduced early
on by [14] and [9] are the most successful and effective attempts. Since then, researchers have introduced several
exponentially /trigonometrically fitted methods and applied them in different scientific fields. It is suggested to refer
to [1, 7, 19, 20] for an intriguing study on the development and analysis of exponentially fitted RK or RKN methods.
Recently, in the context of RKN or RK methods, the availability of some higher derivatives of the solution prompted
many researchers to utilize them to increase the accuracy and efficiency of the numerical methods after incorporating
exponential or trigonometric fitting techniques (see [5, 16, 17]). Although the efficiency of these methods over the
classical RK or RKN methods in reaching a higher-order with a higher order with fewer function evaluations per step
have numerical experiments, unfortunately, computing the higher derivatives requires additional computational costs
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[5]. More recently, [11] proposed trigonometrically fitted multi-step RKN (TFMSRKN) methods. These methods have
the advantage of being able to reduce the number of function evaluations at each step and they do not require extra
costs as in higher derivatives RKN. However, the only drawback of these methods is their inability to solve the problem
stated in Eq. (1.1), as they were integrated to solve u” = f(x,u) where the equation is not explicitly dependent on
the first derivative u/. This prompted [13] to derive trigonometrically fitted multi-step RKN methods able to solve the
problem in Eq. (1.1), but this time the defect of the new derived methods was that they were of lower-order, which are
the third and fourth-order, which was possible to obtain more accurate results by deriving higher-order methods. So,
that motivated us in this study to derive higher-order methods of order five and six, respectively, to solve the problem
in Eq. (1.1) in order to obtain more accurate results. In section 2, we address the description of explicit multi-step
Runge-Kutta-Nystrom (MSGRKN) methods and the definition of trigonometrically fitted. We devote section 3 to
the construction of the new trigonometrically fitted MSGRKN methods and to the study of the linear stability of the
proposed methods. Some test problems are presented to examine the numerical behavior of the suggested methods in
section 4, along with a discussion of the obtained results. Lastly, we give a conclusion in section 5.

2. FUNDAMENTAL CONCEPTS

2.1. The definition of multi-step Runge-Kutta-Nystrom methods. The following formulae are used to define
an explicit k-stage j-step Runge-Kutta-Nystrom methods for the problem given in Eq. (1.1) (see [12])

J K
TigUn—p4+1 + thMu;_“_l + h? Z aijf(tn + th, Yj, Yj/),

B

.)/;: =
=1 =1 j=1
J K
Y = Y g+ bY@ f(te + b, YY), (2.1)
=1 j=1
J J K
Unt1 = Z GeUn_gy1 + hzwzu;,gﬂ + h? Z bif(tn + c;h, Y3, YY),
=1 =1 i=1
J K
u;1+1 = Zylu/nfbrl + hzbif(tn +c;h, Ythl)v
=1 i=1
where ¢;, a;j, T, biy Dies Qoy Ve, e, by, @5, and 7 for £ =1,...,7and i,j = 1,2,...,k are real numbers, and Butcher

tableau can be used to summarise Eq. (2.1) as follows:

c1 | T ... Ty (P11 ... P1y|air ... A1 | T11 .- Fl] ail ... A1k
Ck | Tl -+ Thky | Pl -+ Dry| Gl oo Qgg | Tel oo Tgy | Qg1 ... Ggg
‘ qa .- q ‘wl w]‘ by ... b ‘1/1 Y ‘ by ... bk

Consider the simplifying conditions in equations (3) and (4) from [2], which are as follows:

- ]- +2 J a+2
i o = —_— o — i 176
Zajcj (a+1)(a+2) (Cz Zré( )
j=1 =1
J
~ Ym0 (+2), 0<a<aq-2, (2.2)
=1

_ 1 +1 4 _ a+1
Y ayer = N (1t ) 0<a<gs—1, 2.3
;€5 (a—i—l)(cl 221?"@( ) SO QG2 ( )

where ¢ and g2 are the stage order of Y; and Y] respectively, by taking o = 0,1,2,3,4 in Eq. (2.2), we will get the
five simplifying conditions of Y; and by taking « = 0,1,2,3,4,5 in Eq. (2.3), we will get the six simplifying conditions
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of Y/ which are utilized in the construction of MSGRKN methods.
As is common for RKN methods, under the local assumptions

Un—t+1 = u(l‘n + (1 - Z)h,), uln—f—i-l = ul(xn + (1 - f)h)7 t= 1,... ) J- (24)

We can expand the local truncation errors as

u(rn +1) = = 3 RO FO ), (20),

teNT p( )

W+ )~y =~ 5 O o (0P (1) (), (), (2.5)

h &y P!

where
J

ZJ: 0P — Z (1—20) t)fi:bi\lfg/(t)

J
)= > (1= 0P Z bW (t (2.6)
(=1

For the definitions of NT, p(t) and ¥/ (¢), readers may refer to Definition 3.2. and Lemma 3.1. in [12].
Theorem 2.1. [12]. MSGRKN methods, given in Eq. (2.1), are convergent of order (p > 2) iff

L= a(l—¢ P<*>+Zwe1—w<*>1 +Zb\D” p(t) < p,

(=1 (=1

J K
) =S vl = PO () + S B, p(t) <p+ 1, (2.7)
‘= =
where t € NT.

J

—

Under the five simplifying conditions of Y; obtained from Eq. (2.2) and the six simplifying conditions of Y, obtained
from Eq. (2.3), Theorem 2.1 gives the seventh-order conditions for the MSGRKN methods as follows:

The order conditions for u:
J J
Da@=0""+(@+2) > w (1-0"T +(@+2)(a+1) > bk =1, 0<a<h. (2.8)
=1 =1 i

The order conditions for '

J
v (1=-0" 4 (a+1) ZEcg‘:l, 0<a<6. (2.9)
(=1 i=1

To get the higher-order MSGRKN methods, the following simplifying conditions are utilized to help reduce the number
of equations to be solved

J
Zw—l Zm—l ZQZ:» ZWZ,
=1
ZW (1-20) +sze—c“ qu 10 +sz_1 (2.10)
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2.2. Trigonometrically fitted MSGRKN method.

Definition 2.2. MSGRKN method shown in Eq. (2.1) is considered trigonometrically fitted if it can integrate exactly
the functions exp(iwz) and exp(—iwz), where i is the imaginary unit. As a result, the equations shown below are

obtained.

J J
exp(+ic;s) = Z rieexp(Li(l — £)s) + is Zpigexp(j:i(l —{)s)
=1 =1
e Z a;; exp(xic;s),
j=1
J K
Fiwexp(tic;s) = Liw Z Tiexp(£i(l — €)s) — sw Z a;jexp(+£ic;s),
=1 j=1
J 7
exp(+is) = Z qeexp(£i(l —£)s) £is Z wy exp(£i(1 — £)s)
=1 =1
e Z b; exp(Lic;s),
i=1
J Ko
tiwexp(tis) = tiw Z veexp(£i(1 — €)s) — sw Z b; exp(Lic;s),
=1 i=1

where s = wh. By utilizing the formula of Euler exp(+is) = cos(s) & i¢sin(s) in the system of Egs.

(2.11)

(2.11) and

comparing the real and imaginary parts, the trigonometrically fitting (TF) conditions shown below are obtained:

sin(c; s Zrlgsm 1-2) +SzprOS (1-20)—s Za” sin(c; s

cos(c; s Zw cos(s(1—12)) — sZp“g sin(s(1 — £))
=1

K
sin(c;s E Tiesin(s(1 —£)) + s E aij cos(cjs)
cos(c;s E Fircos((1 — -8 E a@ij; sin(c;s)

-5 Z asj cos(cj s),
j=1

cos(s) = Zqz cos(s(1—1¢)) — ssz sin(s(1 —¢)) — s° Zbi cos(c;s)
=1 i
sin(s) = Zqz sin(s(1 —¢)) + ssz cos(s(1 —0)) — s° Zb sin(c¢;s),

cos( chos (1-2¢) —st sin(c¢;s
sin(s) = Z vesin(s(l —£)) +s Zgi cos(¢;s)
(=1 i=1

i=1

(2.12)

(2.13)

(2.14)

(2.15)

(2.16)

(2.17)

(2.18)

(2.19)
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3. CONSTRUCTION OF THE PROPOSED METHODS

The development of trigonometrically fitted two-step Runge-Kutta-Nystrom (TFTSGRKN) when j = 2 will be discussed in
this section. In specific, two explicit TFTSGRKN methods of orders five and six respectively, will be constructed.

3.1. Trigonometrically fitted TSGRKN method of order five. This method is constructed based on the fifth-order
method of TSGRKN5(4) pair given in [2] as illustrated in Table 1

TABLE 1. The fifth-order method of TSGRKN5(4) pair in [2].

For the parameters of this method, we solve the TF conditions in Egs. (2.16)-(2.19) with the fundamental relation given in
Eq. (2.10)

Zqz:l, ZV@:L qu(l—[)—f— sz:l, (31)

to find the values of b;, Bi, qe, Ve, and we, we obtain the solution:

(—cos (s) s +sin(s)) b1

(—1)s +sin (s)
_ (sin(css) cos (s) + sin (s) cos (c3s) — cos (c3s) s — sin (c35)) by
(=1)s+sin(s)

by = —

N ((sin (5))* —sin(s) s +.(COS (5))%* — 2 cos (s) + 1) wy 508 (s) 17 (3.2)
s(sin(s) — s) 52

by = S sirl1 B) sin (c3s) cos (s) sbs — 2 cos (s) sby sin (s) — sin (s) cos (c3s) sbs

+ (sin (s))? wa — (cos (s))* wa + (sin (s))* 4 (cos (s))* + w2 cos (s) — cos (s), (3.3)

7 _  sin(css) sbs — sin (s) sby — 1 — ws cos (s) 4 cos (s) + w2

ba = sin (s) s (3-4)
_ o S(cos(s) — 1wz sin(s) s?b;  sin (c3s) s%bs

N =2 sin (s) — s sin (s) — s + in (s)—s’ (3:5)
_ ., S(cos(s) =1)wz  sin(s) s2by _ sin(css) s2b3

=1+ sin (s) — s * in (s) —s sin (s) —s ’ (3.6)
_sin(s) s’y _ sin(css) 52b3 ~ (—cos(s)s+sin(s)) wa

e, (s) —s sin (s) — s sin (s) — s ’ (3.7)

by substituting coefficients in Table 1 for the values of b1, bs, c3, b1, bs, and wa, we obtain

(=)=
E)NE
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13 —cos(s) s +sin(s)

800 (—1)s+sin(s)

23 sin(3/5s)cos(s) +sin(s)cos (3/5s) —cos (3/55s) s —sin(3/5s)
96 (—1)s+sin(s)

1 (sin(s))? — sin (s) s + (cos (s))? — 2 cos (s) + 1 _ 2(cos (s) — 1)

5 s(sin(s) — s) 52 ’

be =

. 3 1 .
= Sein(s) \204 sm(g s) cos(s)s — V) cos(s)ssin(s)
125 . 3 18 . 16 16
~ 504 sin(s) cos(f s)s + 7 (sin(s))? + 7 (cos(s))® — 7 cos(s)),
= 1 125 3 1 . 16 16
- (— s1n(gs)s——sm(s)s———&——cos(s)),
)

204 68 17 17

o 1 s(cos(s) — 13 sin (s) s° 23 sin (3/5s) s°

1
5 (—1)s+sin(s) 800 (—)s+sin(s) | 96 (—1)s +sin(s)’
1 s(cos(s)—1) 13  sin(s) s? 23 sin(3/5s) s?
5 (—1)s+sin(s) 800 (— )s+sin(8) 96 (—1)s+sin(s)’
13 sin (s) s 23 sin(3/5s) s> 1 —cos(s) s+ sin (s)

w1 = ———= —_ — + =

800 (—1)s+sin(s) 96 (—1)s+sin(s) 5 (—1)s+sin(s)

ssin(s)

g2 =—1-

(3.9)

(3.10)
(3.11)
(3.12)

(3.13)

In a similar manner, by solving Eqgs. (2.12) and (2.13) for the coefficients a;j, rx;, and p,, yield the following solution

31 = cos (s) s°az1 — spaa sin (s) + s°aza — raz cos (s) + cos (c3s)

sin (c3s)

T2 cos (s) + T2,

ps1 = —sin (s) sas1 +
by substituting coefficients in Table 1 for the values of as1, ps2, as2, and r32, we obtain

864 2304 , 14283

ror = — S0 s (s) 8% 4 020 G (g) s 4 2204 2 1B )
317 73125 3125 3125 3125
+ cos § S
5 b
B . 14283 sin(s) 6264 sin (3/5 )
P31 = 3105 S(8) s = Sios = T 3795 () s

Solving Egs. (2.14) and (2.15) for the coefficients a;; and 7, result in the following solution

731 = cos (3/5 s) — T32 cos (s) — saszy sin (s),

—cos (s) sas1 + Tz sin (s) +sin (3/5 s)

Ga = sin (3/5 s) s n 16 cos(s) — 1
sin (s) 17 sin(s)s ’
Giag = (cos (s)sin (3/5s) + sin (s) cos (3/5 5)) @as
sin (s)
+ 2 9 (sin (5))* — 8 (cos (s))? + 8 cos (s)
17 sin (s) s ’

by substituting coefficients in Table 1, we obtain

(3.14)

(3.15)

(3.16)

(3.17)

(3.18)

(3.19)

(3.20)

(3.21)
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- 3 189 2
731 = COS <5 s) 195 8 (s) 195 Ssin (s), (3.22)
1T 189 (3
ds2 = < 195 8 (s)s+ 125 Sin (s) + sin (5 s)) , (3.23)
_ 175 sin (3/5s) | 16 cos(s) —1

_ 175 24
=904 sin(s) 17 sin(s)s (3:24)
e — 175 cos (3/5 s) sin (s) + sin (3/5 s) cos (s)
27 204 sin (s)

2 9 (sin(s))* — 8 (cos (s))? + 8 cos (s)

— . 2
+ 17 sin (s) s (3.25)

For small values of s the aforementioned parameters undergo heavy cancellations, and the below Taylor series expansions
must be applied

119 5357 4 6329 6

b2 =350 ¥ 31500000 ° ~ 350000000 ° T’ (3.26)
_ 16 1, 2441 4489 &
by = -2 — 2
2751 191250 80325000 © T 6024375000 ° ’ (8:27)
9 1, 739 12727 &
S 2
b1=17*+ 19125 ° T 50325000 ° T 12048750000 ° T (3.28)
1 461, 803 708923 .
- = 2
"= 95 T 1312500 ° T 87500000 ° T 6063750000000 ° T (3.29)
_ 16 461, 803 708023 (3.30
2= 795 7 1312500 87500000 6063750000000 © 7 :
w14 461 4 803 o 708023 (3.31)
1= 95 7 1312500 87500000 6063750000000 © '
17408 96 ¢ 1368 4
= — - .32
"= o5 T 78125 ° T 13671875 ° 1 (3.32)
6144 1152 3632 &
Pst =~ aios t o3a3Ts © T 205078125 ° (3.33)
64 24 4 216 5 2111
T8 = T o5 T 625 ° 78125 ° T argasmoo S T (3.34)
192 168 4 1352 5 4139
452 = o5 T 15625 ° T 2734375 ° 410156250 ° (3.35)
3 4 5, 143 4, 58TT 879661 &
1= 68 T 955 % T 95625 ° T 101625000 ° T 60243750000 ° T (3.36)
S8 4, 832, 58T 1160699 (337
127 57 955 95625 401625000 60243750000 © :

The fifth-order method given by Eqs. (3.26)-(3.37) is denoted as TFTSGRKN4s5. As s — 0, the coefficients ba, b2, b4, g1,
q2, r31, T31, P31, W1, G32, @41, and a4z of the proposed method reduce to those of the original method.

3.2. Trigonometrically fitted TSGRKN method of order six. This method is constructed using the TSGRKNG6(5) pair’s
sixth-order method given in [2] as shown in Table 2

TABLE 2. The sixth-order method of TSGRKNG6(5) pair in [2].

-1 0 1 0 0 0 0 1 0

0 1 0 0 0 0 0 1 0 0 0

1 3456 _ 331 432 _ 138 _ 18 108 0 108 17 6 36 0

B 01 20 | 1038 203390 | oeibAb  d1s1 1685150 0 5 435 255 25 0

T 80 000 | 4988 200 ) OG0 G930 S8R0 jooss | HEEP W | M98 MY B sseso
125 125 11125 2225 4539000 934500 53400 794325 143 143 2431 231 429 51051

‘ 21 T ‘ TT466 3 ‘ — 1993 — 19253 o727 10932, ‘ @I 1 [ _ 32 _ 32 175 0A00 220

125 125 11125 2235 1539000 934500 53400 794325 143 143 21879 3003 2574 13923 2574
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For the coefficients of this method, solve Egs. (2.16)-(2.19) together with the following conditions

for the values of b;, l_)i, qe, Ve, and wy, this lead to the following solution:

(—cos (s) s +sin (s)) b1

be =— sin (s) — s

_ (sin(c3s) cos (s) +sin (s) cos (c s) — cos (c38) s — sin (c3s)) bs

sin (s

(es
(s)
(sin (cas) cos (s) + sin (s) cos (045 — cos (cas) s — sin (cas)) ba
in (s)
)

((sin (s))® —sin (s) s + (cos (s) 2—2005( )+ 1) s2 _cos(s)
+ s(sin(s) — s) 2 52
by = p, sirll B) sin (c3s) cos (s) s b3 + sin (cas) cos (s) s by — 2 cos (s) sby sin (s)

— sin (s) cos (c3s) sby — sin (s) cos (cas) sba + (sin (s))* vz

— (cos (s))* va + (sin (s))* 4 (cos (s))* 4 vz cos (s) — cos (s),

7 sin(css) sbs + sin (cas) sby — sin (s) sby — 1 — vz cos (s) + cos (s) + v2

be —
° sin (s) s
s(cos(s) —1)ws  sin(cas)s’bs  sin(cas)s?by  sin(s) s%by
@ =2- : + — + — - =
sin(s) — s sin (s) — s sin(s) — s sin (s) —
=1+ s (CO.S (8) = Dws sir{ (c38) s%b3 _ sin (cas) 52Dy

sin (s) — s sin (s) — s sin (s) — s

sin (s) s?b;  sin(c3s)s?bs  sin(cas) s’by (= cos(s) s +sin (s)) wa

1= — — —

sin (s) — s sin (s) — s sin (s) — s sin (s) — s

by substituting coefficients in Table 2 for the values of b1, b3, ba, c3, c4, 1_71, 537 547 and wa, we will get

4993 —cos(s) s+ sin(s)
4539000 sin (s) — s

2 =

19727 sin (1/55s) cos (s) +sin(s) cos (1/5s) — cos (1/5s) s —sin (1/5s)

53400 sin (s) — s
B 109324 (sm (170 s) cos (s) + sin (s) cos (170 s) — cos (1—70 s) s — sin (% s))
794325 (sin (s) — s)
3 (sin(s))® —sin (s) s + (cos (s))* — 2 cos (s) + 1 cos (s)
+ 2225 s(sin(s) — s) —2

(3.38)

(3.39)

(3.40)

(3.41)
(3.42)
(3.43)

(3.44)

(3.45)
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b L (uUn sin 1s cos(s) s+ 6400 sin ls cos(s)s
>~ (sin(s))s \ 2574 5 13923 10

+ 64 cos (s) ssin (s) — L175 sin (s) cos 1 s)s— 6400 sin (s) cos 7 s
21879 2574 5 13923 10
142 . ., 144 , 144
+ 13 (sin (s))” + 13 (cos(s)) 143 % (s) ), (3.46)

5——* L175 sin 1s s+ 6400 sin ls s+ 32 sin (s) s
® 7 (sin(s))s \ 2574 5 13923 10 21879

144 144
E-FESCOS( )), (347)

2 2

3 s(cos(s)—1) 19727 sin (% s) s 109324 sin (10 s) s
2225 sin(s) —s 53400 sin(s) — 794325 (sin(s) — s)
4993  sin (s) s®

Q@ =2-

4539000 sin (s) — s’ (3.48)
3 s(cos(s)—1) 19727 sin(1/5s)s> 109324 sin ({5 s) s>
=19 %955 sin(s)—s 53400 sin(s)—s 794325 (sin(s) - s)
4 sin (s) s°
a 4539990300 sin (i))— s’ (3.49)
w, — 4993 sin (s)s> 19727 sin(1/5s)s> 109324 sin (g5 s) s”
4539000 sin(s) —s 53400 sin(s)—s 794325 (sin(s) — s)
3  —cos(s)s+sin(s) (5.50)

2225 sin (s) — s

Similarly, solving the TF conditions in Eqs. (2.12) and (2.13) for the coefficients a;j;, r«;, and p.; produces the following
solution.

31 = cos (s) s>as1 — spsasin (s) + s>aza — r3 cos (s) + cos (1/55) (3.51)
r41 = COS (g) s%aa3 + cos (s) s2aqs — spaz sin (s) + s2a4s — T42 COS (s) + cos (ié) (3.52)

2 : . .1
—s“a318in (s) — cos(S) sp32 + r3zsin(s) +sin(z s
pa1 = (s) () & (s) (5 )7 (3.53)

7

sin(s)raz _ Ppaz cos (s) + sin (TOTS> , (3.54)

1
pa1 = —sin (s) sas1 + ssin (g 5) aa3 +
s

by substituting coefficients in Table 2 for the values of a;j, 732, r42, p32, and ps2, we obtain

18 L, 138 108 5 331 1
T3 T gigs S ()8 gg sin(s) s gron st gyg5 cos(s) + cos (5 8) ’ (3.35)

1685159 1 2 9615319 cos (s) 8% — 285719 sin (s) s
3168000 © 79200000 275000

T41 =

58

3129581 , 2952201 7
~ 200000 ° 1100000 °° () +cos (10 > (3.56)

(=)=
E)NE
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P31 = é (3125 sin (s) s> + 3113285 cos(s)s — 3313215 sin (s) + sin (é )) , (3.57)
9615319 . 1685159 . 2952201 sin (s)

— 707990 29999 in (1 L9955
P = 79300000 °™ () + 3168000 ** 29+ T100000 s

28571 _
— 2?2303 cos (s) + sin (1% S) st (3.58)

Solving Eqs. (2.14) and (2.15) for the coefficients @;; and 7., result in the following solution
1

T31 = cos <5 s) — T32cos (8) — sasisin(s), (3.59)
_ . _ . (1 _ _ 7
741 = —sin (s) s @41 + sin 5 S| s @43 — Ta2 cos (s) + cos 0 s), (3.60)
s — —cos(s) sas1 + ngz sin (s) + sin (% s) 7 (3.61)
_ 1 _ 1 _ o e
as2 = _ | —cos (s) s @41 — cos 558 + T42 8in (s) + sin 0°) ) (3.62)
_ sin (£ s)ass sin(i5s)asa 144 cos(s) — 1

_ 144 3.63
o1 sin (s) LA (s) 143 ein (s)s ’ (8:63)

(sin (s) cos (% s) + cos (s)sin (% 5)) @s3

sin (s)

) easrsin (7)) s o

a52 = —

= (sn (cos

1
2 71 (sin(s)

Sl

2 2
2 ) 72. (cos (s))” + 72 cos (s) ’ (3.64)
143 sin (s) s
by substituting coefficients in Table 2 for the values of as1, @41, @43, @s3, Gs4, 732, and 742, we obtain
_ 1 17 6 .
T31 = cos (g s) ~ 15 08 (s) — 135 Sin (s)s, (3.65)
_ 333 . 25 . 1 2507 7
a1 = =000 sin (s) s + 26 ¢sin (5 s) = 3550 cos (s) + cos (1—0 s) , (3.66)
(6 e T o a e (L))
G32 = ( 125 08 (s)s+ 125 Sin (s) + sin (5 5>> s, (3.67)
Gao = (7 1303030 cos(s)s — ;—2 cos (% s) s+ gggg sin (s) + sin (% s)) s (3.68)
_ 5 sin (£s) 35680 . 7 . 1, 144 cos(s) —1
as1 = 9 W 51051 sin 0 s (sin(s))” + 143 W, (3.69)
5 sin(s)cos (3 s)+cos(s)sin (3 s)
452 = a9 sin (s)
35680 [ . 7 . 7 . -1
~ 1051 <sm (s) cos (E s> + cos (s) sin (E s)) (sin (s))
. 2 2
n 2 71 (sin(s))” — 72 (cos(s))” + 72 cos (s) (3.70)

143 sin (s) s

For small values of s the aforementioned parameters undergo heavy cancellations, and the below Taylor series expansions
must be applied

(&)
ENE
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19253 251 4 10346563 6

7934500 3115000000 ° 2403000000000 ° T

o .82 2T o 21227 5
> 7 73003 337837500 231660000000

poo_ 29 3 g 1089
® T 2574 ' 6256250 ' 180180000000 | 7

121 251 . 5781487 ¢ 691344389 s

125 1557500000 ° 2803500000000 °  11513040000000000 ° ' '’
4 251 4 5T8M8T 691344380 4

125 + 1557500000 ° + 2803500000000 ° + 11513040000000000 ° T
11466 251 4 5781487 6 691344389 s L

11125 ' 1557500000 ° 2803500000000 ° 11513040000000000 °
3456 3 6 51 8 8261 10

3125 156250 ° ' 27343750 ° 164062500000 ° 7
1852201 292013981 & 50166461219 1o

~7100000 ~ 0560000000000 ° T 57024000000000000 ° 7"
_o42 3 s BT 1341

Pst = 3195 T 300625 1640625000 2255859375000

103173 45980767 ¢ 16610612263 ¢ 727479047771 0

PAT = 44000~ 396000000000 ° 1 2851200000000000 ©  6272640000000000000
108 3 33 ¢ 2691 23329 10

125 T 1250° T 156250 ° T 437500000 ° 246093750000 0
.. _ 743 100093 , 17451437 ;= SAS07MTL . 336201538237 o
3250 | 3120000 9360000000 17472000000000 471744000000000000 :
ey - 86 2 31 G 533 o
125 31250 781250 6562500000 :

2299 953209 4 192099941 ¢ 9469563703 s

13000 ~ 156000000 ° 655200000000 ©  1572480000000000 Y
29 229 4 126703 6 4664017 3

92431~ 715000 ° 3003000000 ° 1029600000000 ° 7
68 13511 4 573983 7005989 &

i _ _ 71
931 T 6435000 ° 27027000000 ° 5896800000000 ° (3.71)

r3i =

Ta1 —

+ ...,

T3 =

42 =

asy =

as2 =

We denote the sixth-order method determined by Egs. (3.71)-(3.71) as TFTSGRKNS5s6. As s — 0, the proposed method’s
coefficients bz, ba, bs, q1, q2, w1, 31, Ta1, 731, T41, P31, P41, G32, G42, Gs51, and as2 reduce to those of the original method.

3.3. Absolute stability of the proposed methods. In the subsequent part, we will present the absolute stability of the
trigonometrically fitted MSGRKN methods. For a full study of stability, readers may refer to [13].
Applying the trigonometrically fitted MSGRKN method in Eq. (2.1) to the given test problem

u(2) = =N u(z) + pu (z), (3.72)
the stability matrix M (s, A, Z) given in [13] will be obtained as follow
" =AM+ 20" M wT — A2V N+ ZbT N

1 0
M(s,A, Z) = AT M+ 2z M T A2 N+ Z0T N ) (3.73)
Y I 27X2y
with
1 0 0 0
0 1 0 0
I = . ,
0 0 1 0 G=1)x7
(=)=
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B

F1GURE 1. The stability regions sections of TFTSGRKN4s5 method at s = 1,2, 3.

By using the following stability function for the trigonometrically fitted MSGRKN method
Q(g, M(s, A, Z)) — det [g[ — M(s, A, Z)], (3.74)

Where A = Ah and Z = ph. Following this, we provide the stability definition for the trigonometrically fitted MSGRKN
method.

Definition 3.1. For the trigonometrically fitted MSGRKN method in Eq. (2.1) with the stability matrix M(s, A, Z) given
by Eq. (3.73), suppose the stability matrix M(s, A, Z) has eigenvalues r;(s,A,Z), ¢ = 1,2,...,29. The region of the three
dimensional space

R, = {(S,A,Z) dri(s, A, 2)| < 1,0 = 1,...,2]}
is referred to as the absolute stability region of the method.

Remark 3.2. In the context of the trigonometrically fitted MSGRKN method, understanding the three-dimensional stability
the region in the (s, A, Z) space can be challenging. This paper addresses this difficulty by presenting a selection of sections
through the three-dimensional stability region by planes where the parameter s is constant.

According to Definition 3.1 and Remark 3.2, the stability regions sections of the TFTSGRKN4s5 and TFTSGRKN5s6
methods by plane s = 1,2, 3, respectively are illustrated in Figures 1 and 2, which are the regions in black.

4. NUMERICAL EXPERIMENTS

In this section, to assess the performance of the suggested methods, we compare the effectiveness of the proposed methods
with existing methods by solving a set of test problems. The numerical comparisons here are based on two primary criteria:
the computation of the maximum error and the number of function evaluations. The following abbreviations are used in our
numerical results. The experiments were conducted using Code Blocks 16.01 and Lenovo PC with the following specifications:
Intel(R) Core(TM) i3-5005U CPU @2.00GHz.

TFTSGRKN5s6: the five-stage sixth-order trigonometrically fitted TSGRKN method constructed in this study;
TFTSGRKN4s5: the four-stage fifth-order trigonometrically fitted TSGRKN method constructed in this study;
TSGRKNS5s6: the five-stage sixth-order TSGRKN method given in [2];

TSGRKN4s5: the four-stage fifth-order TSGRKN method given in [2];

L2TFMSRKN4s5: the four-stage trigonometrically fitted MSRKN method of order five derived in [11];
TFSTDRKN3s5: the three-stage trigonometrically fitted TDRKN method of order five derived in [5];
PFAFRKN4s5: the four-stage fifth-order phase fitted and amplification fitted RKN method given in [6];
MSRKNS5s6: the five-stage sixth-order two-step RKN method obtained by [10];

ARKNGS®6s5: the six-stage fifth-order adapted RKN given in [8];

RKT7s6: the seven-stage sixth-order RK method given in [4];
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F1GURE 2. The stability regions sections of TFTSGRKN5s6 method at s = 1,2, 3.

NFE: the number of function evaluations;
e MaxError: Max (|u(zn) —un|) which is the maximum between absolute errors of the computed solution and the exact
solution;

Problem 1. Orbital problem of Stiefel and Bettis which was studied in [11]
Consider the nearly periodic second-order ODE

v’ =0.001e”™ —u, u(0)=1, «'(0)=0.9995, x € [0,80x].

Exact solution: u(z) = cos(z) + 0.0005 z sin(x) + i(sin(:c) —0.0005x cos(:c)).

The exact solution represents the motion of a perturbed circular orbit in the complex plane. The problem has the equivalent
form

uy = 0.001cos(x) — w1, u1(0)=1, w}(0)=0,
uy = 0.001sin(z) — u2, u2(0) =0, uh(0)=0.9995,
Exact solution: u;(z) = cos(x) + 0.0005 z sin(z), wuz(x) = sin(z) — 0.0005 = cos(z).

The frequency w = 1 is chosen as the fitting parameter. For solving this problem, which is a special second-order IVP that
does not include the first derivative u'(z). As shown in Table 3, the sixth-order TFTSGRKN5s6 method produces the lowest
maximum errors compared to the sixth-order TSGRKN5s6 and MSRKN5s6 methods that are used to solve general and special
second-order IVPs, respectively. This is because, unlike the TFTSGRKN5s6 method, the TSGRKN5s6 and MSRKN5s6 methods
do not use the trigonometrically fitted technique. The adaptation of the trigonometrically fitted technique improves the accuracy
of the methods. The maximum errors of the TFTSGRKN5s6 method were also compared to those of the fifth-order methods
(the newly derived TFTSGRKN4s5 method, the TSGRKN4s5 method that used to solve general second-order IVPs, and the
L2TFMSRKN4s5 and PFAFRKN4s5 methods that are used to solve special second-order IVPs). Table 3 demonstrates that the
TFTSGRKN5s6 method is more accurate at all values of h except for h = § where the maximum errors for the TFTSGRKN5s6
and PFAFRKN4s5 methods are almost the same. For the comparison of the proposed fifth-order TFTSGRKN4s5 method,
we compare the maximum errors for the TFTSGRKN4s5 method with those of the other fifth-order methods (TSGRKN4s5,
L2TFMSRKN4s5, and PFAFRKN4s5). We can observe from Table 3 that the TFTSGRKN4s5 method achieves numerical
solutions that are as accurate as those obtained by the PFAFRKN4s5 method and better than those of the TSGRKN4s5 and
L2TFMSRKN4s5 methods at all values of h except at h = £ where PFAFRKN4s5 method is more accurate.

9

Problem 2. Consider the two-body problem [3, 18]

U1 (25+62)u1 p Ua (26+€2) Us

"
Uy = — E - ) Uy = — B - 5/9 9
(ui +u3)¥?  (uf +ud)>? (uf +ud)??  (uf +u3)>/?

(=)
BEE
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1 8
- —b>— TFTSGRKN5s6
2F ~—__ 1 6 —O©— TFTSGRKN4s5 | |
0 —%— TSGRKN5s6
TR 4t —+— TSGRKN4s5 1
3r N ] —|—&— L2TFMSRKN4s5
5l PFAFRKN4s5 | |
= 4t = —O— MSRKN5s6
s S
g g of
© 5 ©
= =
) 5 2r
E 3
j=2] L j=2
S 6F [—p— TFTSGRKN5s6 ° Ll
—O— TFTSGRKN4s5 )
7 | | 7% TSGRKNSs6 \\o ]
—+— TSGRKN4s5 I 61
—8— L2TFMSRKN4s5 \t>\
8 PFAFRKN4s5 ~ 1 8r
—<— MSRKN5s6 \\1>
9 . . . . . . 10 . . . . . . .
2.9 3 3.1 32 33 3.4 35 36 3.6 3.8 4 42 4.4 46 48 5 5.2
log, ,(NFE) log, ,(NFE)
FicUre 3. Curves of efficiency for FIGURE 4. Curves of efficiency for
Problem 1. Problem 2.

GO =1, wh(0)=0, ua(0)=0, wh(0)=1-+ec,
with € = 1073, the fitting parameter w = 1 and z € [0, 1000]
Exact solution: u1(x) = cos(x + €x), wu2(zx) =sin(z + ex).

This problem is also a special second-order IVP. Table 4 presents the findings obtained by the TFTSGRKN5s6 method. These
results are compared with the sixth-order TSGRKN5s6 and MSRKN5s6 methods, as well as the fifth-order TFTSGRKN4s5,
TSGRKN4s5, L2TFMSRKN4s5, and PFAFRKN4s5 methods. In terms of accuracy, Table 4 clearly demonstrates that TFTS-
GRKNb5s6 outperforms the sixth- and fifth-order methods at all values of j except at j = 1 where the errors produced by
TFTSGRKN5s6 and TFTSGRKN4s5 methods are competitive. In addition, the accuracy of the new TFTSGRKN4s5 method
is compared with the accuracy of the fifth-order (TSGRKN4s5, L2ZTFMSRKN4s5, and PFAFRKN4s5) methods. Table 4 shows
that the TFTSGRKN4s5 method performs better than those of fifth-order methods at all values of j except at j = 4 where
TFTSGRKN4s5 and the sixth-order TSGRKN5s6 method have the same errors.

Problem 3. Consider the linear nonhomogeneous oscillatory system [16]
uf = —13u1 + 12u2 +uf + 2uh + 24sin(5z), w1 (0) = -2 41 (0) = — 7438

3005 601
uy = 12u1 — 13uz — 2u) — 3ub + cos(5z), u2(0) = 2222 u5(0) = 4583,
Exact solution: us(z) = — 2532 sin(5x) — 3252 cos(5z),  ua(z) = 3252 sin(5x) + 52z cos(5x).

Where z € [0,1000] and the fitting parameter w = 5. In this problem, where u’ appears explicitly, we compared the results
of the newly proposed TFTSGRKN5s6 and TFTSGRKN4s5 methods with the TSGRKN5s6, TSGRKN4s5, TFSTDRKN3s5,
and ARKNG6s5 methods, which were derived to solve general second-order ODEs (1.1). Moreover, the findings of the newly
derived methods are compared with the classical RK7s6 method. The errors we got are compared for different step sizes and
illustrated in Table 5 shows that the TFTSGRKN5s6 and TFTSGRKN4s5 methods generate smaller errors.

Problem 4. Consider the linear problem studied in [15]

v’ = —u' 4 cos(x), € [0,1007],
1 gyl
w0 =%, wo-1

Exact solution: u(z) = 1 (sin(z) — cos(z)). The fitting parameter w = 1.

To solving this problem where the first derivative appears explicitly. Table 6 demonstrates that the TEFSTDRKN3s5 method’s
findings are competitive with those of our methods. However, our methods are more accurate than the TSGRKN5s6, TS-
GRKN4s5, ARKNG6s5, and RK7s6 methods.

Besides the comparison in terms of the maximum errors, comparing the computational efficiency of the proposed methods
by considering the number of function evaluations is an important aspect of the numerical comparison. The number of function
evaluations directly impacts the computational cost and runtime of the numerical integration process. A method that requires

(&)
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TABLE 3. Comparison of the numerical outcomes for Problem 1.

h  Methods NFE MaxError
TFTSGRKN5s6 1285  5.161572 (-6)
TFTSGRKN4s5 964  5.523519 (-5)
TSGRKNb5s6 1285 1.158438 (-3)

T TSGRKN4s5 964  1.822003 (-2)
L2TFMSRKN4s5 964  1.575662 (-4)
PFAFRKN4s5 1284 1.774120 (-5)
MSRKNb5s6 1285 8.528549 (-3)
TFTSGRKN5s6 1925  2.781890 (-7)
TFTSGRKN4s5 1444 5.498992 (-6)
TSGRKN5s6 1925 7.511925 (-5)

5 TSGRKN4s5 1444  1.941552 (-3)
L2TFMSRKN4s5 1444 2.658036 (-5)
PFAFRKN4s5 1924  1.339640 (-6)
MSRKN5s6 1925 2.680592 (-4)
TFTSGRKN5s6 2881 1.633438 (-8)
TFTSGRKN4s5 2161 5.194966 (-7)
TSGRKN5s6 2881 4.912598 (-6)

5 TSGRKN4s5 2161 1.863227 (-4)
L2TFMSRKN4s5 2161 3.888469 (-6)
PFAFRKN4s5 2880 3.999111 (-8)
MSRKN5s6 2881 1.388938 (-5)
TFTSGRKN5s6 3845 2.266398 (-9)
TFTSGRKN4s5 2884 9.359432 (-8)
TSGRKN5s6 3845 7.163709 (-7)

175 TSGRKN4s5 2884  3.343283 (-5)
L2TFMSRKN4s5 2884 9.608069 (-7)
PFAFRKN4s5 3844  1.996201 (-8)
MSRKNb5s6 3845 2.015801 (-6)

T
—P— TFTSGRKN5s6
—O©— TFTSGRKN4s5 | {
—%— TSGRKN5s6
—+—— TSGRKN4s5
— 85— TFSTDRKN3s5 | |

ARKNG6s5

$<§<

55

IoglO(NFE)

6.5

FicUrRE 5. Curves of efficiency for

Problem 3.

log, ,(MaxError)

-10 -

-15

3.2

T T T
—— TFTSGRKN5s6
—6— TFTSGRKN4s5
—*— TSGRKN5s6
—+— TSGRKN4s5
—&— TFSTDRKN3s5
ARKNG6s5

—<— RK7s6

34 36 3.8

4 4.2 4.4
IoglO(NFE)

46 4.8 5

52

FIGURE 6. Curves of efficiency for

Problem 4.
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TABLE 4. Comparison of the numerical outcomes for Problem 2.

L2TFMSRKN4s5 6000 2.899678

h=1/(27) Methods NFE MaxError
TFTSGRKN5s6 8000 2.464736 (-3
TFTSGRKN4s5 6000 5.993949 (-3
TSGRKN5s6 8000 4.506096 (-1
j=1 TSGRKN4s5 6000 1.822003 (-2
1
2

PFAFRKN4s5 8000 1.928877
MSRKN5s6 8000 2.600481 (+3)

)
)
)
)
)
)
3
TFTSGRKN5s6 16000  2.554999 (-5)
)
)
)
)
)
6

(

(

(

(

(

(

(

(

TFTSGRKN4s5 12000  1.929336 (

TSGRKNG5s6 16000 4.421979 (

j=2 TSGRKN4s5 12000 1.941552 (

L2TFMSRKN4s5 12000  1.626069 (

PFAFRKN4s5 24000  1.357440 (
MSRKNS5s6 16000 1.990184 (+6)

(

(

(

(

(

(

(

(

(

(

(

(

(

(

)
4
3
3
2
3

TFTSGRKN5s6 32000  2.130471 (-7)
TFTSGRKN4s5 24000  6.249775 (-6)
TSGRKN5s6 32000 3.617804 (-5)
j=3 TSGRKN4s5 24000  1.863227 (-4)
L2TFMSRKN4s5 24000 5.777271 (-4)
PFAFRKN4s5 56000  4.106792 (-5)
MSRKN5s6 32000  2.266863 (+3)
TFTSGRKN5s6 64000  8.058148 (-10)
TFTSGRKN4s5 48000 1.812122 (-7)
TSGRKN5s6 64000  2.830579 (-7)
j=4 TSGRKN4s5 48000  3.343283 (-5)
L2TFMSRKN4s5 48000 1.863324 (-5)
PFAFRKN4s5 120000 1.251015 (-6)
MSRKN5s6 64000  1.010329 (+3)

fewer function evaluations is generally more computationally efficient. Tables 3 and 4 illustrate that the TF TSGRKN5s6 method
has the same number of function evaluations as the TSGRKN5s6 and MSRKN5s6 methods. This is because these methods
are two-step Runge-Kutta-Nystrom that only require the evaluation of f(Y,41,Y,11),..., f(Yk,Y!) in each step (k — j function
evaluations). Additionally, the NFE of the TFTSGRKN4s5, TSGRKN4s5, and L2TFMSRKN4s5 methods are same and fewer
than those of the PFAFRKN4s5 method. This is because the TFTSGRKN4s5, TSGRKN4s5, and L2TFMSRKN4s5 methods
are two-step Runge-Kutta-Nystrom that only requires the evaluation of (k — j function evaluations). While the PFAFRKN4s5
method is a one-step Runge-Kutta-Nystrom that requires (k function evaluations) in each step. Tables 5 and 6 show that the
sixth-order two-step Runge-Kutta-Nystrom TFTSGRKN5s6 and TSGRKNSHs6 methods only need three function evaluations
per step compared with the sixth-order classical RK7s6 method that requires reducing problem in Eq. (1.1) to an equivalent
system of first-order implies doubling the dimension of the problem. While for the fifth-order two-step Runge-Kutta-Nystrom,
TFTSGRKN4s5 and TSGRKN4s5 methods require only two function evaluations per step compared with TFSTDRKN3s5 and
ARKNG6s5 methods, which require three and six function evaluations per step, respectively. Moreover, from the plots of
efficiency curves for test problems (1)—(4) given in Figures 36, it is evident that the Figures are consistent with the data of
numerical results presented in the Tables. In general, these curves demonstrate that the proposed methods are accurate enough
and very efficient for solving the type of ODE in Eq. (1.1).
an
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TABLE 5. Comparison of the numerical outcomes for Problem 3.

h=1/(27) Methods NFE MaxError
TFTSGRKNb5s6 32000 4.547125 (-8)
TFTSGRKN4s5 24000 3.355738 ( 7)
TSGRKNb5s6 32000 4.913395 ( 3)
j=3 TSGRKN4s5 24000 8.010632 (-3)
TEFSTDRKN3s5 32000 1.690212 (-5)
ARKNG6s5 48000 1.027010 (40)
RK7s6 112014  7.006685 ( 3)
TFTSGRKN5s6 64000 8.398282 (-11)
TEFTSGRKN4s5 48000 6.168723 ( 10)
TSGRKNb5s6 64000 3.244349 ( 4)
j=4 TSGRKN4s5 48000 5.316291 (-4)
TEFSTDRKN3s5 96000 6.544592 (-8)
ARKNG6s5 144000  2.756132 (-1)
RKT7s6 336028  1.072075 (-4)
TFTSGRKN5s6 128000  1.816325 (-13)
TFTSGRKN4s5 96000 1.067146 (-12)
TSGRKN5s6 128000  2.047889 ( 5)
j=95 TSGRKN4s5 96000 3.163733 ( 5)
TFSTDRKN3s5 224000 2.545351 (-10)
ARKNG6s5 336000  6.892470 (-2)
RKT7s6 784042  1.657023 (-6)
TFTSGRKN5s6 256000  3.774758 (-14)
TFTSGRKN4s5 192000  9.370282 (-14)
TSGRKN5s6 256000 1.279162 ( 6)
j=26 TSGRKN4s5 192000 1.935512 ( 6)
TFSTDRKN3s5 480000  1.009859 (-12)
ARKNG6s5 720000  1.718241 (-2)
RKT7s6 1680056 2.574848 (-8)

5. CONCLUSIONS

In this article, the development of the fifth and sixth-order explicit multi-step Runge-Kutta-Nystrom methods with the
trigonometrically fitting technique used to obtain the trigonometrically fitted multi-step Runge-Kutta-Nystrém methods. In
this technique, each stage formula is imposed to exactly integrate the functions exp(iwz) and exp(—iwx), where i is the
imaginary. These methods are compared with the existing RK methods and their trigonometrically- and phase-fitted versions
in the literature.
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TABLE 6. Comparison of the numerical outcomes for Problem 4.

h=1/(27) Methods NFE  MaxError
TFTSGRKN5s6 2516 4.477934 (-10)
TFTSGRKN4s5 1888 2.322399 (-9)
TSGRKNb5s6 2516 1.262954 (-3)
j=1 TSGRKN4s5 1888 2.205504 (-3)
TFSTDRKN3s5 2516 1.476419 (-11)
ARKNG6s5 3774 4.443020 (-2)
RKT7s6 8806 5.353845 (-6)
TFTSGRKN5s6 5033 7.743112 (-13)
TFTSGRKN4s5 3775  4.735934 (-12)
TSGRKNb5s6 5033 6.998643 (-5)
j=2 TSGRKN4s5 3775  1.064347 (-4)
TEFSTDRKN3s5 7548 1.543210 (-14)
ARKNG6s5 11322 1.075808 (-2)
RK7s6 26418  6.898729 (-8)
TFTSGRKN5s6 10061  2.528186 (-14)
TFTSGRKN4s5 7546  1.905420 (-14)
TSGRKN5s6 10061  4.123126 (-6)
j=3 TSGRKN4s5 7546  6.173361 (-6)
TFSTDRKN3s5 17608  3.663736 (-15)
ARKNG6s5 26412 2.645903 (-3)
RK7s6 61628  9.736510 (-10)
TFTSGRKN5s6 20117  2.482389 (-14)
TFTSGRKN4s5 15088  2.891090 (-14)
TSGRKNSs6 20117 2.503142 (-7)
=4 TSGRKN4s5 15088  3.752632 (-7)
TFSTDRKN3s5 37724  4.320870 (-15)
ARKNG6s5 56586 6.561930 (-4)
RK7s6 132034 1.444511 (-11)
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