
تعداد نشریات | 45 |
تعداد شمارهها | 1,383 |
تعداد مقالات | 16,914 |
تعداد مشاهده مقاله | 54,470,640 |
تعداد دریافت فایل اصل مقاله | 17,127,252 |
ادغام الگوریتمهای بازار بورس، ملکه زنبور عسل و تکامل مختلط تصادفی برای بهینهسازی تابع چند متغیره | ||
مجله مهندسی برق دانشگاه تبریز | ||
دوره 55، شماره 1 - شماره پیاپی 111، خرداد 1404، صفحه 177-188 اصل مقاله (821.45 K) | ||
نوع مقاله: علمی-پژوهشی | ||
شناسه دیجیتال (DOI): 10.22034/tjee.2024.57954.4689 | ||
نویسندگان | ||
Mina Salim* 1؛ Sima Hamedifar2؛ Ali Asghar Lotfi3 | ||
1Department of Control Engineering, Faculty of Electrical and Computer Engineering, university of Tabriz | ||
2Department of Electronics, Carleton University, Ottawa, Canada | ||
3Faculty of Electrical and Computer Engineering, University of Tabriz, Tabriz, Iran | ||
چکیده | ||
در این مقاله، سه الگوریتم فراابتکاری شناختهشده شامل الگوریتم بازار بورس، الگوریتم تکامل پیچ درهم و الگوریتم زنبور ملکه به منظور ارائه سه الگوریتم تکاملی ترکیبی جدید با نامهای EMA-QB، EMA-SCE و EMA-SCE-QB مورد بررسی قرار گرفتهاند. بهمنظور تحلیل و ارزیابی کارایی و اثربخشی این الگوریتمهای ترکیبی، عملکرد آنها با الگوریتمهای EMA، SCEو QB در حل 12 تابع محک با تعداد متغیرهای ۱۰، ۲۰، ۳۰ و ۵۰ مقایسه شده است. نتایج نشان میدهد که ترکیب الگوریتمها منجر به بهبود عملکرد در جستجوی نقطه بهینه از نظر دقت و زمان شده است، بهگونهای که این بهبود با افزایش تعداد متغیرها ملموستر میشود. در نهایت، مجموع زمان اجرای الگوریتمها، کمینه مقدار توابع هدف، و تعداد تکرارهای لازم برای بهینهسازی تمامی توابع مورد بررسی، در قالب چهار نمودار برای هر تعداد متغیر به تصویر کشیده شدهاند که نشاندهنده موفقیت الگوریتمهای ترکیبی پیشنهادی است. | ||
کلیدواژهها | ||
الگوریتم ترکیبی؛ الگوریتم بازار بورس؛ الگوریتم زنبور ملکه؛ تکامل مختلط تصادفی | ||
مراجع | ||
[1] X.-S. Yang, "Nature-Inspired Optimization Algorithms", London: Elsevier, 2014.
[2] Q. Wei, Z. Guo, H. C. Lau, and Z. He, "An artificial bee colony-based hybrid approach for waste collection problem with midway disposal pattern, " Appl. Soft Comput., vol. 76, pp. 629–637, 2019.
[3] A. Kumar and S. Bawa, "A comparative review of meta-heuristic approaches to optimize the SLA violation costs for dynamic execution of cloud services", Soft Compute, vol. 24, pp. 3909–3922, 2020.
[4] S. Mirjalili, S. M. Mirjalili, and A. Lewis, "A Grey wolf optimizer, "Adv Eng Softw, vol. 69, pp. 46–61, 2014.
[5] J.O. Kephart, "A biologically inspired immune system for computers", In: Artificial life IV: proceedings of the fourth international workshop on the synthesis and simulation of living systems, pp. 130–139, 1994.
[6] J. Greensmith and U. Aickelin, "The deterministic dendritic cell algorithm, " SSRN Electron. J., 2008.
[7] M. Yang and X. He, "Flower pollination algorithm: a novel approach for multi objective optimization, "Eng Optim, vol. 46, no. 9, pp. 1222–1237, 2014.
[8] XS. Yang , "Bat algorithm for multi-objective optimization", Int J Bio Inspir Comput , vol. 3, no. 5, pp.267–274, 2011.
[9] I. Fister Jr, X.-S. Yang, I. Fister, J. Brest, and D. Fister, "A brief review of nature-inspired algorithms for optimization, " arXiv [cs.NE], 2013.
[10] Ll. Yang, Wy. Qian, Q. Zhang , " Central force optimization", J Bohai Univ (Natural Science Edition) , vol. 32, no. 3, pp. 203–206, 2011.
[11] J. Holland , "Adoption in natural and artificial systems", University of Michigan Press, Michigan, 1975.
[12] S. H. Jung, "Queen-bee evolution for genetic algorithms," Electron Lett, vol. 39, no. 6, pp. 575–576, 2003.
[13] J. Kennedy , "Particle swarm optimization", In: Sammut C, Webb GI (eds) Encyclopedia of machine learning, Springer, Boston, MA, 2011.
[14] M. Dorigo and C. Blum, "Ant colony optimization theory: a survey", Theor Comput Sci, vol. 344, no. 2–3, pp. 243–278, 2005.
[15] M. Dorigo and D. Caro, “Ant colony optimization: a new meta-heuristic”, in Proceedings of the 1999 congress on evolutionary computation-CEC 99, vol. 2, IEEE, 1999, pp. 1470–1477.
[16] Q. Duan, V.K. Gupta, S. Sorooshian, " A shuffled complex evolution approach for effective and efficient global theory minimization", Journal of optimization and applications, vol.76, no. 3, pp. 501-521, 1993.
[17] N. Ghorbani, E. Babaei, "Exchange Market Algorithm," Applied Soft Computing, vol. 19, pp. 177-187, 2014.
[18] A. A. Taleizadeh, P. Pourrezaei Khalegi, I. Moon, "Hybrid NSGA-II for an imperfect production system considering product quality and returns under two warrenty policies," Applied Soft Computing Journal, vol. 75, pp. 333-348, 2018.
[19] Z. Zhang, S. Ding and W. Jia, "A hybrid optimization algorithm based on cuckoo search and differential evolution for solving constrained engineering problems," Engineering Applications of Artificial Intelligence, vol. 85, pp. 254-268, 2019.
[20] Y. Ding, K. Zhou and W. Bi, "Feature selection based on hybridization of genetic algorithm and competitive swarm optimizater", Soft Computing, 2020.
[21] M. A. Tawhid and A. M. Ibrahim, "A hybridization of grey wolf optimizer and differential evolution for solving nonlinear systems", Evol. Syst., vol. 11, no. 1, pp. 65–87, 2020.
[22] M.-T. Vakil-Baghmisheh and M. Salim, "The design of PID controllers for a Gryphon robot using four evolutionary algorithms: a comparative study", Artif. Intell. Rev., vol. 34, no. 2, pp. 121–132, 2010.
[23] D. L. Gonzalez-Alvarez, M. A. Vega-Rdriguez and A. Rubio-Largo, "Searching for common patterns of protein sequences by means of a parallel hybrid honey-bee mating optimization," Parallel Computing, vol. 76, pp. 1-17, 2018.
[24] A. S. Al-Araji, "An adaptive swing-up sliding mode controller design for a real inverted pendulim system based on Culture-Bees algorithm," European Journal of Control, vol. 45, pp. 45-56, 2018.
[25] A. Baniamerian, M. Bashiri and R. Tavakkoli-Moghaddam, "Modified variable neighborhood search and genetic algorithm for profitable heterogeneous vehicle routing problem with cross-docking," Applied Soft Computing Journal, vol. 75, pp. 441-460, 2018.
[26] S. C. and A. T., "Internet of medical things-load optimization of power flow based on hybrid enhanced grey wolf optimization and dragonfly algorithm," Future Generatin Computer Systems, vol. 98, pp. 319-330, 2019.
[27] H. Zhang, Q. Zhang, L. Ma, Z. Zhang and Y. Liu, "A hybrid ant colony optimization algorithm for a multi-objective vehicle routing problem with flexible time windows", Information Science, vol. 490, pp. 166-190, 2019.
[28] A. Rubio-Largo, M. A. Vega-Rodriguez and D. L. Gonzalez-Alvarez, "Hybrid multiobjective artificial bee colony for multiple sequence alignment", Applied Soft Computing, vol. 41, pp. 157-168, 2015.
[29] A. Rafiee, P. Moradi, A. Ghaderzadeh, "A Swarm Inteligence Based Multi-Lable Feature Selection Method Hybridized with a Local Search Strategy", Tabriz Journal of Electrical Engineering (TJEE), vol. 51, no. 4, Winter 2021
[30] N. Ghorbani, E. Babaei and F. Sadikoglu, "BEMA: Binary Exchange Market Algorithm," Procedia Computer Science , vol. 120, pp. 656-663, 2017.
[31] N. Ghorbani, E. Babaei and F. Sadikoglu, "Exchange market algorithm for multi-objective economic emission dispatch and reliability," Procedia Computer Science, vol. 120, pp. 633-640, 2017.
[32] T. Dokeroglu, E. Sevinc and A. Cosar, "Artificial bee colony optimization for the quadratic assignment problem," Applied Soft Computing Journal, vol. 76, pp. 595-606, 2019.
[33] W. Hu, G. Wen, A. Rahmani and Y. Yu, "Distributed consensus tracking of unknown nonlinear chaotic delayd fractional-order multi-agent systems with external disturbances base on ABC algorithm", Commun Nonlinear Sci Numer Simulat, vol. 71, pp. 101-117, 2018.
[34] S. V. Devaraj et al., "Robust Queen Bee Assisted Genetic Algorithm (QBGA) Optimized Fractional Order PID (FOPID) Controller for Not Necessarily Minimum Phase Power Converters", in IEEE Access, vol. 9, pp. 93331-93337, 2021, doi: 10.1109/ACCESS.2021.3092215.
[35] M. T. Vakil-Baghmisheh and M. Salim, "A Modified Fast Marriage in Honey Bee Optimization Algorithm," 5th International Symposium on Telecommunications, pp. 950-955, 2010.
[36] S.Yurish, "Advances in Artificial Intelligence: Reviews", IFSA Publishing, 2019.
[37] Q. Duan, S. Sorooshian and V. Gupta, "Effective and Efficient Global Optimization for Conceptual Rainfall-Runoff Models", Water Esourcesr Esearc, vol. 28, no. 4, pp. 1015-1031, 1992.
[38] R. Dash, R. Rautray, and R. Dash, "Utility of a Shuffled Differential Evolution algorithm in designing of a Pi-Sigma Neural Network based predictor model", Appl. Comput. Inform., vol. 19, no. 1/2, pp. 22–40, 2023.
[39] V. C. Mariani, L. G. J. Luvizotto, F. A. Guerra and L. dos. S. Coelho, "A hybrid shuffled complex evolution approach based on differential evolution for unconstrained optimization," Applied Mathematics and Computation, vol. 217, no. 12, pp. 5822-5829, 2011.
[40] C. Blum and A. Roli, "Hybrid Metaheuristics: An Introduction", Studies in Computational Intelligence (SCI), vol. 114, pp. 1–30 , 2008.
[41] A. F. Ali, M. A. Tawhid, "A hybrid particle swarm optimization and genetic algorithm with population partitioning for large-scale optimization problems", Ain Shams Engineering Journal, vol. 8, no. 2, pp. 191-206, 2017.
[42] S. Fidanova, M. Paprzycki and O. Roeva, "Hybrid GA-ACO Algorithm for a model parameters identification problem," in Proceedings of the 2014 Federated Conference on Computer Science and Information Systems, 2014.
[43] E Mahdipour, M Ghasemzadeh, "A Hybrid Meta-heuristic Algorithm for High Performance Computing", Tabriz Journal of Electrical Engineering (TJEE), vol. 51, no. 1, Spring 2021
[44] X. Yu and Mitsuo, "Introduction to evolutionary algorithms", 2010th ed. London, England: Springer, 2012.
[45] D. E. Goldberg, "Genetic algorithms in search, optimization, and machine learning", Boston, MA: Addison Wesley, 1989. | ||
آمار تعداد مشاهده مقاله: 345 تعداد دریافت فایل اصل مقاله: 40 |