- [1] M. Abbaszadeh, M. Bayat, and M. Dehghan, The local meshless collocation method for numerical simulation of shallow water waves based on generalized equal width (GEW) equation, Wave Motion, 107 (2021), 102805.
- [2] A. Babu and N. Asharaf, Numerical solution of nonlinear Sine-Gordon equation using modified cubic Bspline-based differential quadrature method, Computational Methods for Differential Equations, 11(2) (2023), 369-386.
- [3] M. A. Banaja and H. O. Bakodah, Runge-Kutta integration of the equal width wave equation using the method of lines, Math. Probl. Eng., (2015), 1-9.
- [4] A. Ba¸shan, N. M. Ya˘gmurlu, Y. Uc¸ar, and A. Esen, Finite difference method combined with differential quadrature method for numerical computation of the modified equal width wave equation, Numer. Methods Partial Differ. Equations., 37 (2009), 690-706.
- [5] A. Ba¸shan, Single Solitary Wave and Wave Generation Solutions of the Regularised Long Wave (RLW) Equation, G.U. J. Sci, 35(4) (2022), 1597-1612.
- [6] A. Ba¸shan, A novel outlook to the an alternative equation for modelling shallow water wave: Regularised Long Wave (RLW) equation,Indian J. Pure Appl. Math., (2022).
- [7] A. Ba¸shan and N. M. Ya˘gmurlu, A mixed method approach to the solitary wave, undular bore and boundary-forced solutions of the Regularized Long Wave equation, Computational and Applied Mathematics, 41(169) (2022),
- [8] T. B. Benjamin, J. L Bona, and J. J Mahony, Model equations for long waves in non-linear dispersive systems,Philosophical Transactions of the Royal Society of London Series A, 272 (1972), 47–78.
- [9] S. K. Bhowmik and S. B. G. Karakoc, Numerical solutions of the generalized equal width wave equation using the Petrov–Galerkin method, Applicable Analysis , 100(4) (2021), 714–73.
- [10] F. Bulut, O. Oru¸c, and A. Esen,¨ Higher order Haar wavelet method integrated with strang splitting for solving regularized long wave equation , Mathematics and Computers in Simulation, 197 (2022), 277–290.
- [11] I. Da˘g, B. Saka, and D. Irk,˙ Galerkin method for the numerical solution of the RLW equation using quintic B-splines, Journal of Computational and Applied Mathematics, 190 (2006),532–547.
- [12] A. Do˘gan, Application of Galerkin’s method to equal width wave equation, Applied Mathematics and Computation, 160 (2005), 65–76.
- [13] A. Ebrahimijahan, M. Dehghan, and M. Abbaszadeh, Numerical simulation of shallow water waves based on generalized equal width (GEW) equation by compact local integrated radial basis function method combined with adaptive residual subsampling technique , Nonlinear Dyn., 105 (2021), 3359–3391.
- [14] A. Esen, A numerical solution of the equal width wave equation by a lumped Galerkin method, Applied Mathematics and Computation, 168(1) (2005), 270–282.
- [15] A. Esen, A lumped Galerkin method for the numerical solution of the modified equal-width wave equation using quadratic B-splines , Int. J. Comput. Math., 83(5-6) (2006), 449–459.
- [16] A. Esen and S. Kutluay, Solitary wave solutions of the modified equal width wave equation, Commun. Non linear Sci. Numer. Simul., 13(3) (2008), 1538–1546.
- [17] D. J. Evans and K. R. Raslan, Solitary waves for the generalized equal width (GEW) equation , International Journal of Computer Mathematics, 82(4) (2005), 445–455.
- [18] L. R. T. Gardner and G. A. Gardner, Solitary waves of the equal width wave equation, Journal of Computational Physics, 101(1) (1991), 218–223.
- [19] L. R. T. Gardner, G. A. Gardner, F. A. Ayoup, and N. K. Amein, Simulations of the EW undular bore, Commun. Numer. Meth. En., 13(7) (1997),583–592.
- [20] L. R. T. Gardner, G. A. Gardner, and I. Da˘g, A B-spline finite element method for the regularized long wave equation, Commun. Numer. Methods Eng., 11 (1995), 59–68.
- [21] J. Geiser, Iterative splitting methods for differential equations, in Numerical Analysis and Scientific Computing,Chapman and Hall/CRC, Boca Raton London New York, 2011.
- [22] T. Geyikli and S. B. G. Karako¸c, Petrov–Galerkin method with cubic B-splines for solving the MEW equation , Bull. Belg. Math. Soc., Simon Stevin, 19 (2012), 215–227.
- [23] H. Gu¨nerhan, M. Kaabar, and E. C¸elik, Novel analytical and approximate-analytical methods for solving the nonlinear fractional smoking mathematical model, Sigma J Eng Nat Sci, 41(2) (2023),331-343
- [24] S. Hamdi, W. H. Enright, W. E. Schiesser, J. J. Gottlieb, and A. Alaal, Exact solutions of the generalized equal width wave equation, in : Proceedings of the International Conference on Computational Science and Its Applications, LNCS, 2668 (2003),725–734.
- [25] R. Hedli and F. Berrimi, Novel Traveling Wave Solutions of Generalized Seventh-Order KdV Equation and Related Equation, Computational Methods for Differential Equations, 12(2) (2024), 392-412.
- [26] W. Hundsdorfer and J. Verwer, Numerical solution of time-dependent advection-diffusion-reaction equations in Springer Series in Computational Mathematics, Springer, Verlag Berlin Heidelberg, 2003.
- [27] B. Inan and A. R. Bahadir,˙ A Fully Implicit Finite Difference Approach for Numerical Solution of the Generalized Equal Width (GEW) Equation, Proc. Natl. Acad. Sci., India, Sect. A Phys. Sci., 90(2) (2020),299–308.
- [28] S. B. G. Karako¸c and H. Zeybek, A cubic B-spline Galerkin approach for the numerical simulation of the GEW equation, Stat. Optim. Inf. Comput., 4 (2016) 30–41.
- [29] S. B. G. Karako¸c, K. Omrani, and D. Sucu, Numerical investigations of shallow water waves via generalized equal width (GEW) equation, Applied Numerical Mathematics, 162 (2021),249–264.
- [30] S. B. G. Karakoc¸ and K. K. Ali, Analytical and computational approaches on solitary wave solutions of the generalized equal width equation, Applied Mathematics and Computation, 371 (2020), 124933.
- [31] S. B. G. Karako¸c and H. Zeybek, A septic B-spline collocation method for solving the generalized equal width wave equation , Kuwait J. Sci., 43(3) (2016), 20-31.
- [32] S. B. G. Karakoc¸, A numerical analysing of the GEW equation using finite element method, Journal of Science and Arts, 2(47) (2019) 339-348.
- [33] S. B. G. Karako¸c and T. Geyikli, Numerical solution of the modified equal width wave equation, Int. J. Diff.Equations., (2012), 1–15.
- [34] S. B. G. Karako¸c and T. Geyikli, A numerical solution of the MEW equation using sextic B-splines , J. Adv. Res. Appl. Math., 5(2013), 51–65.
- [35] M. Karta, Two Effective Numerical Approaches for Equal Width Wave (EW) Equation Using Lie- Trotter Splitting Technique ,Konuralp Journal of Mathematics, 10(2) (2022), 220-232.
- [36] M. Karta, A new application for numerical computations of the modified equal width equation (MEW) based on Lumped Galerkin method with the cubic B-spline ,Computational Methods for Differential Equations, 11(1) 2023, 95-107.
- [37] S. Kutluay and A. Esen, A finite difference solution of the regularized long wave equation, Mathematical Problems in Engineering, 2006.
- [38] M. Lakestani, Numerical Solutions of the KdV Equation Using B-Spline Functions, Iran J Sci Technol Trans Sci., 41 (2017), 409–417.
- [39] G. I. Marchuk, Some application of splitting-up methods to the solution of mathematical physics problems , Aplikace matematiky, 13 (1968), 103–132.
- [40] P. J. Morrison, J. D. Meiss, and J. R. Carey, Scattering of RLW solitary waves, Physica D, 11 ( 1984), 324–336.
- [41] H. Panahipour, Numerical simulation of GEW equation using RBF collocation method, Communications in Numerical Analysis, 2012 (2012), 1–28.
- [42] D. H. Peregrine, Long waves on a beach, Journal of Fluid Mechanics, 27(4) ( 1967), 815–827.
- [43] P. M. Prenter, Splines and variational methods, J. Wiley, New York, 1975.
- [44] K. R. Raslan, Collocation method using cubic B-spline for the generalised equal width equation , Int. J. Simulation and Process Modelling, 2 (2006), 37–44.
- [45] K. R. Raslan, M. A. Ramadan, and I. G.Amıen, Finite difference approximations for the modified equal width wave (MEW) equation, J. Math Comput Sci., 4(5) (2014), 940-957.
- [46] T. A. Roshan, Petrov-Galerkin method for solving the generalized equal width (GEW) equation, Journal of Computational and Applied Mathematics, 235(2011), 1641–1652.
- [47] B. Saka, A finite element method for equal width equation, Applied Mathematics and Computation, 175(1) (2006),730–747.
- [48] B. Sportisse, An analysis of operator splitting techniques in the stiff case , J. Comput. Phys. 161(2000), 140–168.
- [49] N. Taghizadeh, M. Mirzazadeh, M. Akbari, and M. Rahimian, Exact solutions for generalized equal width equation, Math. Sci. Lett. 22, (2013) 99–106.
- [50] N. M. Ya˘gmurlu and A. S. Karaka¸s, Numerical Solutions of the EW Equation By Trigonometric Cubic B-spline Collocation Method Based on Rubin-Graves Type Linearization, Numerical Methods for Partial Differential Equations, 36(5) (2020), 1170-1183.
- [51] N. M. Ya˘gmurlu and A. S. Karaka¸s, A novel perspective for simulations of the MEW equation by trigonometric cubic B-spline collocation method based on Rubin-Graves type linearization, Computational Methods for Differential Equations.,(2021), 1-14.
- [52] H. Zeybek and S. B. G. Karakoc, Application of the collocation method with B-splines to the GEW equation ,Electronic Transactions on Numerical Analysis, 46 (2017) 71–88.
|