- [1] T. Abdeljawad, On conformable fractional calculus, J. Comput. Appl. Math., 279 (2015), 57–66.
- [2] T. Abdeljawad, S. Rashid, Z. Hammouch, and Y. M. Chu, Some new local fractional inequalities associated with generalized (s,m)-convex functions and applications, Adv. Differ. Equ., 1 (2020), 406.
- [3] P. Agarwal, M. Chand, and G. Singh, Certain fractional kinetic equations involving the product of generalized k-Bessel function, Alex. Eng. J., 4 (2016), 3053–3059.
- [4] A. Akgl, E. lgl, N. Sakar, B. Bilgi, and A. Eker, New applications of the new general integral transform method with different fractional derivatives, Alex. Eng. J., 80 (2023), 498-505.
- [5] S. Bhatter, Nishant, and Shyamsunder, Mathematical model on the effect of environmental pollution on biological populations, Advances in Mathematical Modelling, Applied Analysis and Computation, Springer Nature Switzerland, 666 (2023), 488–496.
- [6] V.B.L. Chaurasia and S.C. Pandey, On the new computable solution of the generalized fractional kinetic equations involving the generalized function for the fractional calculus and related functions, Astrophys. Space Sci., 3 (317) (2008), 213–219.
- [7] S. B. Chen, S. Rashid, M. A. Noor, Z. Hammouch, and Y. M. Chu, New fractional approaches for n-polynomial P-convexity with applications in special function theory, Adv. Differ. Equ., 1 (2020), 543, 1–31.
- [8] J. Choi and D. Kumar, Solutions of generalized fractional kinetic equations involving Aleph functions, Math. Commun., 1(20) (2015), 113–123.
- [9] G. A. Dorrego and D. Kumar, A generalization of the kinetic equation using the Prabhakar-type operators, Honam Math. J., 3(39) (2017), 401–416.
- [10] B. K. Dutta, L. K. Arora, and J. Borah, On the solution of fractional kinetic equation, Gen. Math. Notes, 1(6) (2011), 40–48.
- [11] M. Ghasemi, M. Samadi, E. Soleimanian, and K. W. Chau, A comparative study of black-box and white-box data-driven methods to predict landfill leachate permeability, Environ. Monit. Assess., 7(195) (2023), 862.
- [12] Y. Gu, S. Malmir, J. Manafian, O. A. Ilhan, A. A. Alizadeh, and A. J. Othman, Variety interaction between k-lump and k-kink solutions for the (3+ 1)-D Burger system by bilinear analysis, Results Phys., 43 (2022), 106032.
- [13] M. S. Hashemi, A. Akgl, A. M. Hassan, and M. Bayram, A method for solving the generalized Camassa-Choi problem with the Mittag-Leffler function and temporal local derivative, Alex. Eng. J., 81 (2023), 437-443.
- [14] H. J. Haubold and A. M. Mathai, The fractional kinetic equation and thermonuclear functions, Astrophys. Space Sci., 1(273) (2000), 53–63.
- [15] K. Jangid, S. D. Purohit, K. S. Nisar, and S. Araci, Generating functions involving the incomplete H-functions, Analysis, 4(41) (2021), 239–244.
- [16] K. Jangid, S. D. Purohit, R. Agarwal, and R. P. Agarwal, On the generalization of fractional kinetic equation comprising incomplete H-function, Kragujevac J. Math., 5(47) (2023), 701–712.
- [17] F. Jarad and T. Abdeljawad, A modified Laplace transform for certain generalized fractional operators, Results Nonlinear Anal., 2(1) (2018), 88–98.
- [18] U. N. Katugampola, New approach to a generalized fractional integral, Appl. Math. Comput., 3 (218) (2011), 860–865.
- [19] S. Kumar and A. Atangana, A numerical study of the nonlinear fractional mathematical model of tumor cells in presence of chemotherapeutic treatment, Int. J. Biomath, 03 (13) (2020), 2050021.
- [20] I. U. Khan, S. Mustafa, A. Shokri, S. Li, A. Akgl, and A. Bariq, The stability analysis of a nonlinear mathematical model for typhoid fever disease, Sci. Rep., 13(1) (2023), 15284.
- [21] M. Lakestani, J. Manafian, A. R. Najafizadeh, and M. Partohaghighi, Some new soliton solutions for the nonlinear the fifth-order integrable equations, Comput. methods differ. equ., 10(2) (2022), 445-460.
- [22] J. Manafian and M. Lakestani, Application of tan(φ/2)-expansion method for solving the BiswasMilovic equation for Kerr law nonlinearity, Optik, 127(4) (2016), 2040-2054.
- [23] J. Manafian and M. Lakestani, Abundant soliton solutions for the KunduEckhaus equation via tan(φ(ξ))-expansion method, Optik, 127(14) (2016), 5543-5551.
- [24] J. Manafian and M. Lakestani, Optical soliton solutions for the GerdjikovIvanov model via tan(φ/2)-expansion method, Optik, 127(20) (2016), 9603-9620.
- [25] J. Manafian and M. Lakestani, N-lump and interaction solutions of localized waves to the (2+ 1)-dimensional variable-coefficient CaudreyDoddGibbonKoteraSawada equation, J. Geom. Phys., 150 (2020), 103598.
- [26] J. Manafian, L. A. Dawood, and M. Lakestani, New solutions to a generalized fifth-order KdV like equation with prime number p= 3 via a generalized bilinear differential operator, Partial Differ. Equ. Appl. Math., 9 (2024), 100600.
- [27] A. M. Mathai and R. K. Saxena, The H-function with applications in statistics and other disciplines, John Wiley and Sons, New York, NY, USA, 1978.
- [28] G. Mittag-Leffler, Sur la representation analytique dune branche uniforme dune fonction monogene, Acta Math., 1(29) (1905), 101–181.
- [29] E. Mittal, D. Sharma, and S. D. Purohit, Katugampola kinetic fractional equation with its solution, Results Nonlinear Anal., 3(5) (2022), 325–336.
- [30] E. W. Montroll and G. H. Weiss, Random walks on lattices, II, J. Math. Phys., 2(6) (1965), 167–181.
- [31] R. R. Nigmatullin, On the theory of relaxation for systems with remnant memory, Phys. Status Solidi (b), 1(124) (1984), 389–393.
- [32] A. I. Saichev and G. M. Zaslavsky, Fractional kinetic equations: solutions and applications, Chaos, 4(7) (1997), 753–764.
- [33] M. Samadi, H. Sarkardeh, and E. Jabbari, Explicit data-driven models for prediction of pressure fluctuations occur during turbulent flows on sloping channels, Stoch. Environ. Res. Risk. Assess., 34 (2020), 691–707.
- [34] R. K. Saxena and S. L. Kalla, On the solutions of certain fractional kinetic equations, Appl. Math. Comput., 2(199) (2008), 504–511.
- [35] H. M. Srivastava and N. P. Singh, The integration of certain products of the multivariable H-function with a general class of polynomials, Rend. Circ. Mat. Palermo, 2(32) (1983), 157–187.
- [36] H. M. Srivastava, M. A. Chaudhry, and R.P. Agarwal, The incomplete pochhammer symbols and their applications to hypergeometric and related functions, Integral Transforms Spec. Funct., 9(23) (2012), 659–683.
- [37] H. M. Srivastava, R. K. Saxena, and R. K. Parmar, Some families of the incomplete H-functions and the incomplete H-functions and associated integral transforms and operators of fractional calculus with applications, Russ. J. Math. Phys., 25 (2018), 116–138.
- [38] S. K. Vandrangi, Aerodynamic characteristics of NACA 0012 airfoil by CFD analysis, J. Airl. Oper. Aviat. Manag., 1(1) (2022), 1–8.
- [39] G. Velidi, Pressure and velocity variation in remote-controlled plane using CFD analysis, J. Airl. Oper. Aviat. Manag., 1(1) (2022), 9–18.
- [40] G. H. Weiss, Aspects and applications of the random walk, North Holland, AmsterdamNew YorkOxford, 1994.
- [41] M. Zhang, X. Xie, J. Manafian, O. A. Ilhan, and G. Singh, Characteristics of the new multiple rogue wave solutions to the fractional generalized CBS-BK equation, J. Adv. Res., 38 (2022), 131-142.
|