تعداد نشریات | 44 |
تعداد شمارهها | 1,303 |
تعداد مقالات | 16,020 |
تعداد مشاهده مقاله | 52,489,367 |
تعداد دریافت فایل اصل مقاله | 15,216,930 |
An efficient computational method based on exponential B-splines for a class of fractional sub-diffusion equations | ||
Computational Methods for Differential Equations | ||
مقاله 7، دوره 12، شماره 4، دی 2024، صفحه 719-740 اصل مقاله (2.29 M) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22034/cmde.2024.57372.2398 | ||
نویسندگان | ||
Anshima Singh* 1؛ Sunil Kumar1؛ Higinio Ramos2 | ||
1Department of Mathematical Sciences, Indian Institute of Technology (BHU) Varanasi, India. | ||
2Scientific Computing Group, Universidad de Salamanca, Plaza de la Merced, Salamancay, 37008, Spain. | ||
چکیده | ||
The primary objective of this research is to develop and analyze a robust computational method based on exponential B splines for solving fractional sub-diffusion equations. The fractional operator includes the Mittag-Leffler function of one parameter in the form of a kernel that is non-local and non-singular in nature. The current approach is based on an effective finite difference method for discretizing in time, and the exponential B-spline functions for discretizing in space. The proposed scheme is proven to be unconditionally stable and convergent. Also, the unique solvability of the method is established. Numerical simulations conducted for multiple test examples validate the agreement between the obtained theoretical results and the corresponding numerical outcomes. | ||
کلیدواژهها | ||
Fractional sub-diffusion equation؛ Time fractional derivative؛ Exponential B-spline collocation؛ Stability analysis؛ Error bounds | ||
مراجع | ||
| ||
آمار تعداد مشاهده مقاله: 199 تعداد دریافت فایل اصل مقاله: 305 |