- [1] R. P. Agarwal, D. Baleanu, J. J. Nieto, D. F. Torres, and Y. Zhou, A survey on fuzzy fractional differential and optimal control nonlocal evolution equations, Journal of Computational and Applied Mathematics, 339 (2018), 329.
- [2] M. Z. Ahmad and N. A. bin Abdul Rahman, Explicit solution of fuzzy differential equations by mean of fuzzy sumudu transform, International Journal of Applied Physics and Mathematics, 5, 2 (2015), 86-93.
- [3] E. K. Akgul, A. Akgul, and M. Yavuz, New illustrative applications of integral transforms to financial models with different fractional derivatives, Chaos, Solitons and Fractals, 146 (2021), 117.
- [4] M. K. Alaoui, F. M. Alharbi, and S. Zaland, Novel analysis of fuzzy physical models by generalized fractional fuzzy operators, Journal of Function Spaces, 2022 (2022), Article ID 9824568.
- [5] M. N. Alam, O. A. Ilhan, J. Manafian, M. I. Asjad, H. Rezazadeh, and H. M. Baskonus, New results of some of the conformable models arising in dynamical systems, Advances in Mathematical Physics, (2022), 113.
- [6] M. N. Alam, O. A. Ilhan, M. S. Uddin, and M. A. Rahim, Regarding on the results for the fractional clannish random walkers parabolic equation and the nonlinear fractional cahn-Allen equation, Advances in Mathematical Physics, 2022 (2022), 112.
- [7] M. N. Alam, S. Islam, O. A. Ilhan, and H. Bulut, Some new results of nonlinear model arising in incompressible visco-elastic kelvin-voigt fluid, Mathematical Methods in the Applied Sciences, 45 (2022), 10347-10362.
- [8] M. N. Alam, Soliton solutions to the electric signals in telegraph lines on the basis of the tunnel diode, Partial Differential Equations in Applied Mathematics, 7 (2023), 100491.
- [9] M. N. Alam, An analytical technique to obtain traveling wave solutions to nonlinear models of fractional order, Partial Differential Equations in Applied Mathematics, 8 (2023), 100533.
- [10] M. N. Alam and S. M. R. Islam, The agreement between novel exact and numerical solutions of nonlinear models, Partial Differential Equations in Applied Mathematics, 8 (2023), 100584.
- [11] M. N. Alam, H. S. Akash, U. Saha, M. S. Hasan, M. W. Parvin, and C. Tunc, Bifurcation analysis and solitary wave analysis of the nonlinear fractional soliton neuron model, Iran. J. Sci., 47 (2023), pages 17971808.
- [12] M. N. Alam, Exact solutions to the foam drainage equation by using the new generalized (g/g)-expansion method, Results in Physics, 5 (2015), 168-177.
- [13] F. A. Alawad, E. A. Yousif, and A. I. Arbab, A new technique of laplace variational iteration method for solving space-time fractional telegraph equations, International Journal of Differential Equations, 2013 (2013) Article ID 256593.
- [14] N. H. Aljahdaly, R. P. Agarwal, R. Shah, and T. Botmart, Analysis of the time fractional-order coupled burgers equations with non-singular kernel operators, Mathematics, 9(18) (2021), 2326.
- [15] T. Allahviranloo and M. B. Ahmadi, Fuzzy Laplace transforms, Soft Computing, 14(3), 235243.
- [16] S. A. Altaie, N. Anakira, A. Jameel, O. Ababneh, A. Qazza, and A. K. Alomari, Homotopy analysis method analytical scheme for developing a solution to partial differential equations in fuzzy environment, Fractal and Fractional, 6 (2022), 419.
- [17] R. Alyusof, S. Alyusof, N. Iqbal, and S. K. Samura, Novel evaluation of fuzzy fractional biological population model, Journal of Function Spaces, 2022 (2022).
- [18] M. Arfan, K.Shah, A. Ullah, and T. Abdeljawad, Study of fuzzy fractional order diffusion problem under the mittag-leffler kernel law, Phys. Scr. , 96 (2021), 074002.
- [19] M. A. Asiru, Classroom note: Application of the sumudu transform to discrete dynamic systems, International Journal of Mathematical Education in Science and Technology, 34 (2010), 944949.
- [20] Z. Ayati and J. Biazar, On the convergence of homotopy perturbation method, Journal of the Egyptian Mathematical Society, 23(2) (2015),424428.
- [21] S. Bhalekar and V. Daftardar-Gejji, Solving evolution equations using a new iterative method, Numerical Methods for Partial Differential Equations, 26 (2010), 906916.
- [22] S. Chakraverty, S. Tapaswini, and D. Behera, Fuzzy Arbitrary Order System: Fuzzy Fractional Differential Equations and Applications, John Wiley & Sons, 2016.
- [23] V. Daftardar-Gejji and S. Bhalekar, Solving fractional boundary value problems with dirichlet boundary conditions using a new iterative method, Computers & Mathematics with Applications, 59 (2010), 18011809.
- [24] L. Debnath, Recent applications of fractional calculus to science and engineering, International Journal of Mathematics and Mathematical Sciences, 2003 (2003), Article ID 753601, 30.
- [25] E. ElJaoui, S. Melliani, and L. S. Chadli, Solving second-order fuzzy differential equations by the fuzzy laplace transform method, Adv. Differ. Equ., 2015 (2015), 114.
- [26] A. Z. Fino and H. Ibrahim, Analytical solution for a generalized space-time fractional telegraph equation, Mathematical Methods in the Applied Sciences, 36 (2013), 18131824.
- [27] M. Garg, P. Manohar, and S. L. Kalla, Generalized differential transform method to space-time fractional telegraph equation, International Journal of Differential Equations, 2011 (2011), Article ID 548982, 9.
- [28] M. Garg, A. Sharma, and P. Manohar, Solution of generalized space-time fractional telegraph equation with composite and riesz-feller fractional derivatives, International Journal of Pure and Applied Mathematics, 83 (2013), 685691.
- [29] Z. Hammouch, M. Yavuz, and N. Ozdemir, Numerical solutions and synchronization of a variable-order fractional chaotic system, Mathematical Modelling and Numerical Simulation with Applications, 1 (2021), 1123.
- [30] A. Harir, S. Melliani, and L. S. Chadli, Fuzzy space-time fractional telegraph equations, International Journal of Mathematics Trends and Technology, 64 (2018), 101108.
- [31] A. K. Haydar, Fuzzy sumudu transform for fuzzy nth-order derivative and solving fuzzy ordinary differential equations, Int. J. Sci. Res, 4 (2015), 13721378.
- [32] N. V. Hoa, H. Vu, and T. M. Duc, Fuzzy fractional differential equations under CaputoKatugampola fractional derivative approach, Fuzzy Sets and Systems, 375 (2019), 7099.
- [33] R. W. Ibrahim, Complex transforms for systems of fractional differential equations, Adv. Differ. Equ., 2012 (2012), 15.
- [34] H. Jafari, Iterative method for non-adapted fuzzy stochastic differential equations, Russ Math., 65 (2021),24-34.
- [35] A. Khastan, F. Bahrami, and K. Ivaz, New results on multiple solutions for nth-order fuzzy differential equations under generalized differentiability, Boundary Value Problems, 2009 (2009), 113.
- [36] A. Kilbas, H. Srivastava, and J. Trujillo, Theory and applications of fractional differential equations, NorthHolland Mathematics Studies, book Series, 2006.
- [37] A. Kochubei and Y. Luchko, Fractional differential equations, Mathematics in Science and Engineering, New York, 2019.
- [38] K. A. Kshirsagar, V. R. Nikam, S. B. Gaikwad, and S. A. Tarate, The double fuzzy elzaki transform for solving fuzzy partial differential equations, Journal of the Chungcheong Mathematical Society, 35 (2022), 177196.
- [39] K. A. Kshirsagar, V. R. Nikam, S. B. Gaikwad, and S. A. Tarate, Solving Fuzzy Caputo-Fabrizio Fractional OneDimensional Heat Equations by the Fuzzy Laplace Transform Iterative Method, Tuijin Jishu/Journal of Propulsion Technology, 44(3) (2023), 362-374.
- [40] K. A. Kshirsagar, V. R. Nikam, S.B. Gaikwad, and S. A. Tarate, Fuzzy Laplace-Adomian Decomposition Method for Approximating Solutions of Time Fractional Klein-Gordan Equations in a Fuzzy Environment, European Chemical Bulletin, 12(8) (2023), 5926-5943.
- [41] Y. Liu, Approximate solutions of fractional nonlinear equations using homotopy perturbation transformation method, Abstract and Applied Analysis, 2012 (2012), Article ID 752869.
- [42] K. S. Miller and B. Ross, An introduction to the fractional calculus and fractional differential equations, john-wily and sons. Inc. New York, 1993.
- [43] S. Momani, Analytic and approximate solutions of the space- and time-fractional telegraph equations, Applied Mathematics and Computation, 170 (2005), 11261134.
- [44] Z. Odibat, S. Momani, and V. S. Erturk, Generalized differential transform method: Application to differential equations of fractional order, Applied Mathematics and Computation, 197 (2008), 467477.
- [45] M. Osman, Y. Xia, M. Marwan, and O. A. Omer, Novel approaches for solving fuzzy fractional partial differential equations, Fractal and Fractional, 6 (2022).
- [46] P. Ravi, V. L. Agarwal, and J. J. Nieto, On the concept of solution for fractional differential equations with uncertainty, Nonlinear Analysis Theory, Methods, and Applications, 72 (2010), 28592862.
- [47] N. A. A. Rahman and M. Z. Ahmad, Solving fuzzy fractional differential equations using fuzzy sumudu transform, J. Nonlinear Sci. Appl, 10 (2017), 26202632.
- [48] N. A. A. Rahman, Fuzzy sumudu decomposition method for solving differential equations with uncertainty, AIP Conference Proceedings, 2184 (2019), 060042.
- [49] N. A. Rahman, Fuzzy sumudu decomposition method for fuzzy delay differential equations with strongly generalized differentiability, Mathematics and Statistics, 8 (2020), 570576.
- [50] S. Rashid, R. Ashraf, and F. S. Bayones, A novel treatment of fuzzy fractional swiftHohenberg equation for a hybrid transform within the fractional derivative operator, Fractal and Fractional, 5 (2021), 209.
- [51] Y. A. Rossikhin and M. V. Shitikova, Applications of fractional calculus to dynamic problems of linear and nonlinear hereditary mechanics of solids, Applied Mechanics Reviews, 50 (1997),1567.
- [52] A. Sevimlican, An approximation to the solution of space and time fractional telegraph equations by hes variational iteration method, Mathematical Problems in Engineering, (2010), 2010.
- [53] K. Shah, A. R. Seadawy, and M. Arfan, Evaluation of one dimensional fuzzy fractional partial differential equations, Alexandria Engineering Journal, 59 (2020), 33473353.
- [54] R. Shah, A. S. Alshehry, and W. Weera, A semi-analytical method to investigate fractional-order gas dynamics equations by shehu transform, Symmetry, 14 (2022), 1458.
- [55] I. Talib, M. N. Alam, D. Baleanu, D. Zaidi, and A. Marriyam, A new integral operational matrix with applications to multi-order fractional differential equations, AIMS Mathematics, 6 (2021), 87428771.
- [56] S. Tapaswini and D. Behera, Analysis of imprecisely defined fuzzy space-fractional telegraph equations, Pramana - J. Phys., 94 (2020), 110.
- [57] S. A. Tarate, A. P. Bhadane, S. B. Gaikwad, and K. A. Kshirsagar, Sumudu-iteration transform method for fractional telegraph equations, J. Math. Comput. Sci., 12 (2022), Article ID 127.
- [58] S. Tarate, A. Bhadane, S. Gaikwad, and K. Kshirsagar, Solution of time-fractional equations via sumudu-adomian decomposition method, Computational Methods for Differential Equations, 11(2) (2023), 345356.
- [59] S. Tarate, A. Bhadane, S. Gaikwad, and K. Kshirsagar, A Semi-Analytic Solution For Time-Fractional Heat Like And Wave Like Equations Via Novel Iterative Method, European Chemical Bulletin 12 (Special issue 8) (2023), 6164-6187.
- [60] S. A. Tarate, A. P. Bhadane, S. B. Gaikwad, and K. A. Kshirsagar, Duality Relations of Fractional order Transforms, Tuijin Jishu/Journal of Propulsion Technology, 44(3) (2023), 375-384.
- [61] L. Verma and R. Meher, Effect of heat transfer on JefferyHamel cu/agwater nanofluid flow with uncertain volume fraction using the double parametric fuzzy homotopy analysis method, Eur. Phys. J. Plus, 137 (2022), 372.
- [62] A. Yildirim, The homotopy perturbation method for solving the modified Korteweg-de Vries equation, Z. Naturforsch, 63 (2008), 621626.
- [63] Z. Zhao and C. Li, Fractional difference/finite element approximations for the timespace fractional telegraph equation, Applied Mathematics and Computation, 219 (2012), 29752988.
|