تعداد نشریات | 44 |
تعداد شمارهها | 1,306 |
تعداد مقالات | 16,056 |
تعداد مشاهده مقاله | 52,630,783 |
تعداد دریافت فایل اصل مقاله | 15,306,296 |
Memory as a Mass-Based Graph: Towards a Conceptual Framework for the Simulation Model of Human Memory in Al | ||
مجله پژوهش های فلسفی | ||
دوره 17، شماره 45، دی 1402، صفحه 203-214 اصل مقاله (269.95 K) | ||
نوع مقاله: مقاله علمی- پژوهشی | ||
شناسه دیجیتال (DOI): 10.22034/jpiut.2023.53850.3387 | ||
نویسندگان | ||
مهدی ملاکاظمی ها* 1؛ حسن فتحزاده2 | ||
1دانشجوی کارشناسی فلسفه، دانشگاه شهید بهشتی، ایران. | ||
2دانشیار گروه فلسفه، دانشگاه زنجان، ایران. | ||
چکیده | ||
There are two approaches for simulating memory as well as learning in artificial intelligence; the functionalistic approach and the cognitive approach. The necessary condition to put the second approach into account is to provide a model of brain activity that contains a quite good congruence with observational facts such as mistakes and forgotten experiences. Given that human memory has a solid core that includes the components of our identity, our family and our hometown, the major and determinative events of our lives, and the countless repeated and accepted facts of our culture, the more we go to the peripheral spots the data becomes flimsier and more easily exposed to oblivion. It was essential to propose a model in which the topographical differences are quite distinguishable. In our proposed model, we have translated this topographical situation into quantities, which are attributed to the nodes. The result is an edge-weighted graph with mass-based values on the nodes which demonstrates the importance of each atomic proposition, as a truth, for an intelligent being. Furthermore, it dynamically develops and modifies, and in successive phases, it changes the mass of the nodes and weight of the edges depending on gathered inputs from the environment. | ||
کلیدواژهها | ||
human memory؛ computational model؛ dynamic simulation؛ mass-based graph؛ learning | ||
مراجع | ||
Anderson, J. R., & Lebiere, C. J. (2014). The Atomic Components of Thought. Psychology Press. https://doi.org/10.4324/9781315805696 Clark, A. (2001). Mind ware: An Introduction to the Philosophy of Cognitive Science, 1st edition, (Chapter 2). Oxford University Press Clark, S. E., & Gronlund, S. D. (1996). Global matching models of recognition memory: How the models match the data. Psychonomic Bulletin & Review, 3(1), 37-60. https://doi.org/10.3758/BF03210740 Eich, J. M. (1982). A composite holographic associative recall model. Psychological Review, 89(6), 627-661. https://doi.org/10.1037/0033295X.89.6.627 Gayler, R. W. (2004). Vector Symbolic Architectures answer Jackendoff's challenges for cognitive neuroscience. https://arxiv.org/abs/cs/0412059v1 Gazzaniga. A. & et al. (2014). Cognitive Neuroscience, The Biology of the Mind, 4th ed. W. W. Norton. Hintzman, D. L. (1984). MINERVA 2: A simulation model of human memory. Behavior Research Methods, Instruments, & Computers, 16(2), 96-101. https://doi.org/10.3758/BF03202365 Humphreys, M. S., & et al. (1989). Global matching: A comparison of the SAM, Minerva II, Matrix, and TODAM models. Journal of Mathematical Psychology, 33(1), 36-67. https://doi.org/10.1016/0022-2496(89)90003-5 Kahana, M. J.; Rizzuto, D. S., & Schneider, A. R. (2005). Theoretical correlations and measured correlations: Relating recognition and recall in four distributed memory models. Journal of Experimental Psychology. Learning, Memory, and Cognition, 31(5), 933-953. https://doi.org/10.1037/02787393.31 .5 .933 Kelly, M. A., & et al. (2013). Encoding structure in holographic reduced representations. Canadian Journal of Experimental Psychology/Revue Canadienne de Psychologie Expérimentale, 67(2), 79-93. https://doi.org/10.1037/a0030301 Kelly, M. A., & et al. (2017). The memory tesseract: Mathematical equivalence between composite and separate storage memory models. Journal of Mathematical Psychology, 77, 142-155. https://doi.org/10.1016/j.jmp.2016.10.006 Kelly, M. A., Reitter, D., & West, R. L. (2017). Degrees of Separation in Semantic and Syntactic Relationships. 15th editon, International Conference on Cognitive Modeling. https://par.nsf.gov/biblio/10067553-degreesseparation-semantic-syntactic-relationships Kelly, M. A., & West, R. L. (2017). A Framework for Computational Models of Human Memory. AAAI Fall Symposium, A Standard Model of Mind: AAAI Technical Report, FS-17-05. https://par.nsf.gov/biblio/10067560framework-computational-models-human-memory Lindau, S. T., & et al. (2018). Sexuality and Cognitive Status: A U.S. Nationally Representative Study of Home-Dwelling Older Adults. Journal of the American Geriatrics Society, 66(10), 1902-1910. https://doi.org/10.1111/jgs.15511 Locke, J., & Phemister, P. (Eds.). (2008). An Essay concerning Human Understanding. Oxford University Press. McClelland, J. L., Botvinick, M. M., Noelle, D. C., Plaut, D. C., & et al. (2010). Letting Structure Emerge: Connectionist and Dynamical Systems Approaches to Cognition. Trends in Cognitive Sciences, 14(8), 348-356. https://doi.org/10.1016/j.tics.2010.06.002. Murdock, B. B. (1993). TODAM2: A model for the storage and retrieval of item, associative, and serial-order information. Psychological Review, 100(2), 183-203. https://doi.org/10.1037/0033-295X.100.2.183 Plate, T. A. (1995). Holographic reduced representations. IEEE Transactions on Neural Networks, 6(3), 623-641. https://doi.org/10.1109/72.377968 Putnam, H. (1988). Representation and Reality. A Bradford Book. MIT Press. Quine, W. V. O. (1997). From a logical point of view. Harper and Row. Raaijmakers, J. G. W., & Shiffrin, R. M. (1981). Search of Associative Memory. Psychological Review, 88(2), 93-134 Rouse, W. B. & Morris, N. M. (1986). On looking into the black box: Prospects and limits in the search for mental models. Psychological Bulletin, 100(3), 349-363. https://doi.org/10.1037/0033-2909.100.3.349 Tulving, E. (1976). Ecphoric processes in recall and recognition. In Recall and recognition, pp. x, 275-x, 275. John Wiley & Sons. | ||
آمار تعداد مشاهده مقاله: 292 تعداد دریافت فایل اصل مقاله: 232 |