
Research Paper
Computational Methods for Differential Equations
http://cmde.tabrizu.ac.ir

Vol. 12, No. 3, 2024, pp. 571-584
DOI:10.22034/CMDE.2024.57844.2426

A numerical approach for solving Caputo-Prabhakar distributed-order time-fractional partial
differential equation

Mohsen Khasteh1, Amir Hosein Refahi Sheikhani1,∗, and Farhad Shariffar2

1Department of Applied Mathematics, Faculty of Mathematical Sciences, Lahijan Branch, Islamic Azad University, Lahijan, Iran.

2Department of Applied Mathematics, Fouman and Shaft Branch, Islamic Azad University, Fouman, Iran.

Abstract

In this paper, we proposed a numerical method based on the shifted fractional order Jacobi and trapezoid methods

to solve a type of distributed partial differential equations. The fractional derivatives are considered in the Caputo-
Prabhakar type. By shifted fractional-order Jacobi polynomials our proposed method can provide highly accurate

approximate solutions by reducing the problem under study to a set of algebraic equations which is technically
simpler to handle. In order to demonstrate the error estimates, several lemmas are provided. Finally, numerical

results are provided to demonstrate the validity of the theoretical analysis.
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1. Introduction

In this paper, we consider a time-fractional partial differential equation with distributed order(TFPDE-DO) as:∫ 1

0

c(µ)CPDµ
t u(x, t)dµ = uxx(x, t) + z(x, t, u), x ∈ [0, L], t ∈ [0, T ], (1.1)

and for Eq. (1.1), the initial and boundary conditions is defined as:

u(x, 0) = f(x),

u(0, t) = g
0
(t), u(L, t) = g

L
(t), (x, t) ∈ (0, L)× (0, T ], (1.2)

where in Eq. (1.1), the CPDµ
t is a Caputo-Prabhakar fractional derivatives of order 0 < µ ≤ 1 and c(µ) is a

weight function of fractional order, that c(µ) ≥ 0. We know that the Prabhakar operator is obtained by modifying
the Riemann–Liouville integral operator by extending its kernel with a three-parameter Mittag–Leffler function, a
function which extends the well-known two-parameter Mittag–Leffler function.

Due to the abundant application of the Prabhakar generalized Mittag-Leffler function in fractional calculus, a
reason was to select this type of the Caputo-Prabhakar fractional derivative of order µ. Applications of the three-
parameter Mittag-Leffler function can be described in mathematical fields such as physics and stochastic processes,
electromagnetic, viscosity, various materials, and different media [3, 12, 19, 35, 41]. For the first time in the 1960s
Caputo is studied the distributed-order differential equation [10] to expand the stress-strain equation of inelastic media.
Later in [6], the multi-term viscoelastic equation of fractional order as a model of the distributed-order equation is
developed. The differential equation of distributed-order is considered as an extension of the differential equation of
multi-term fractional order.

Recently, due to the comprehensive utilization of the differential equations of distributed-order in modeling diverse
fields as physics [6], engineering [28, 47] and mathematical sciences [20, 37], their have attracted much consideration

Received: 03 August 2023 ; Accepted: 15 January 2024.
∗ Corresponding author. Email:ah refahi@yahoo.com.

571



572 M. KHASTEH, A. H. REFAHI SHEIKHANI, AND F. SHARIFFAR

of various authors. One of the reasons that the numerical approach is used for solving this type of equations is that
there is no precise analytical method to solve them. The different numerical methods to solve this type of differential
equations of fractional order have been used. Fei [14] proposed a numerical method based on the Galerkin-Legendre
spectral method for solving the two-dimensional time fractional fourth-order partial differential equation of distributed-
order. Zaky [48] derived a solution for the distributed-order fractional initial value problems by using the Legendre
spectral-collocation method.

Bonyadi [8] studied a solution for the space-time fractional PDEs with variable coefficients by using the spectral
shifted Jacobi collocation method in conjunction with the shifted Jacobi operational matrix of fractional derivatives.
Zhang [49] derived a solution for the two-dimensional Riesz space distributed-order advection-diffusion equation by
using Crank-Nicolson ADI Galerkin-Legendre spectral method. The nonlinear fractional differential equations of
distributed-order are solved by using the Legendre-Gauss collocation method by Xu [44]. Dehghan [11] derived a
numerical method for solving a fractional damped diffusion-wave equation of distributed-order by using the spectral
element method.

Guo [16] derived a solution for the two-dimensional distributed-order time-space fractional reaction-diffusion equa-
tion by using the Legendre spectral element method. Morgado [32] derived a solution for the distributed order
time-fractional diffusion equation by using the Chebyshev collocation method. Mashayekhi [33] applied the synthetic
of block-pulse functions and Bernoulli polynomials, Gorenflo [17] proposed the Fourier and Laplace transforms for solv-
ing the one-dimensional distributed order diffusion-wave equation, Li [25] proposed a classical numerical quadrature
method.

Aminikhah [1] used a combined method based on the Laplace transform and new homotopy perturbation method to
solve a particular class of the distributed order fractional Riccati equation. Mashoo [30] proposed the stability of two
classes of distributed-order Hilfer-Prabhakar differential equations. They [31] also proposed the stability of distributed
order differential equations form of Hilfer-Prabhakar. Aminikhah [2] proposed two numerical methods to solve the
distributed-order fractional Bagley-Torvik equation by the fractional differential transform and Grunwald-Letnikov
method, Ye [46] used a compact difference method.

Mashoof [29] proposed an operational matrix for solving the fractional differential equations of distributed order,
Yuttanan [45] studied a numerical method based on the upon Legendre wavelets polynomials for solving linear and
nonlinear distributed fractional differential equations, the existence and uniqueness for differential equations of dis-
tributed order proposed by Ford [13], the uniqueness of solutions for time-fractional diffusion equations of distributed
order on bounded domains proposed by Luchko [26], Bhrawy [7] proposed a numerical method based on the Jacobi-
Gauss-Lobatto collocation method to solve Schrödinger equations of distributed order and Kharazmi [22] studied a
solution for the fractional partial differential equations of distributed order by using pseudo-spectral method.

Besides them, other numerical methods can be mentioned in this field, as the piecewise functions together with
the classical Jacobi polynomials and the Gauss–Legendre quadrature rule [21], operational matrix approach based
on the Müntz–Legendre polynomials [38], computational algorithms based on Legendre wavelet, Bernstein wavelet,
and standard tau approach [24], Laplacian operator in axisymmetric cylindrical geometry [4], fourth-order compact
difference scheme [36], operational matrix based on shifted Legendre polynomials [27], fractional-order Fibonacci
functions [43], fractional integral operator of fractional-order Bernoulli-Legendre functions and the collocation scheme
[40], and homotopy analysis technique and sumudu transform [42].

The main contribution of this paper is to make a numerical scheme to enable approximation, and rigorously
perform its convergence and error analyses, which is seldom studied in the current literature. Our main purpose in
this work is to study a hybrid approach based on the spectral collocation method and the trapezoid formula to obtain a
numerical solution of the time-fractional partial differential equation with distributed order, that this type of equation
is introduced in Eq. (1.1). For this purpose, the structure of this paper is ordered as below. In section 2, we describe
some mathematical preliminaries and fundamentals which are used later. In section 3, we introduce the spectral
collocation method and the trapezoid formula to solve time-fractional partial differential equations of distributed
order, also in this section, the convergence and error for the approximate solutions of this type of equations are
studied. Some numerical examples are shown in section 4.
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2. Mathematical preliminaries and fundamentals

This section recalls some main definitions and lemmas which are used in the next section.

Definition 2.1. [19]. Let m− 1 < <(µ) ≤ m and u ∈ L1[0, b], 0 < t < b ≤ ∞. Then the left-sided and the right-sided
Prabhakar fractional integrals are defined by

(Eγ
ρ,µ,ω,0+u)(t) =

∫ t

0

(t− τ)µ−1Eγρ,µ(ω(t− τ)ρ)u(τ)dτ,

(Eγ
ρ,µ,ω,b−u)(t) =

∫ b

t

(τ − t)µ−1Eγρ,µ(ω(τ − t)ρ)u(τ)dτ, (2.1)

in which Eγρ,µ(ωtρ) is the generalized Mittag-Leffler function and displayed by

Eγρ,µ(t) =

∞∑
n=0

(γ)n
n!Γ(ρn+ µ)

tn.

Definition 2.2. [19]. Let u ∈ L1[0, b]. Then for <(µ) ∈ (m− 1,m], m ∈ N. Then, the left-sided and the right-sided
Prabhakar fractional derivatives are defined by

(Dγ
ρ,µ,ω,0+u)(t) =

dm

dtm
E−γρ,m−µ,ω,a+u(t),

(Dγ
ρ,µ,ω,b−u)(t) = (−1)m

dm

dtm
E−γρ,m−µ,ω,b−u(t). (2.2)

Moreover, for the known absolutely continuous function u, the Caputo-Prabhakar fractional derivatives is defined by

CPDµ
t u(t) = E−γρ,m−µ,ω,0+

dm

dtm
u(t). (2.3)

Lemma 2.3. [23] Let ρ, µ, γ, ν, ω ∈ C such that <(ρ),<(µ),<(ν) > 0. Then∫ t

0

(t− τ)µ−1Eγρ,µ(ω(t− τ)ρ)τν−1dτ = Γ(ν)tµ+ν−1Eγρ,µ+ν(ωtρ).

Definition 2.4. [5] Let α, β > −1 and −1 ≤ x ≤ 1. Then the Jacobi polynomials of degree n are given by:

Θ
(α,β)
0 (x) = 1,

Θ
(α,β)
n+1 (x) =

(α+ β + 2)x+ α− β
2

, (2.4)

Θ
(α,β)
n+1 (x) = (a(α,β)

n − b(α,β)
n )Θ(α,β)

n (x)− c(α,β)
n Θ

(α,β)
n−1 (x),

where in the above relation a
(α,β)
n , b

(α,β)
n and c

(α,β)
n are defined by:

a(α,β)
n =

(2n+ α+ β + 1)(2n+ α+ β + 2)

2(n+ 1)(n+ α+ β + 1)
,

b(α,β)
n =

(β2 − α2)(2n+ α+ β + 1)

2(n+ 1)(n+ α+ β + 1)(2n+ α+ β)
, (2.5)

c(α,β)
n =

(n+ β)(n+ α)(2n+ α+ β + 2)

(n+ 1)(n+ α+ β + 1)(2n+ α+ β)
.

Also, for the Jacobi polynomials Θ
(α,β)
n (x), the following relations is given by:

Θ(α,β)
n (−x) = (−1)nΘ(α,β)

n (x), Θ(α,β)
n (−1) = (−1)n

Γ(n+ β + 1)

n!Γ(β + 1)
,

DlΘ(α,β)
n (x) =

Γ(n+ α+ β + l + 1)

2nΓ(n+ α+ β + 1)
Θ

(α+l,β+l)
n−l (x), (2.6)



574 M. KHASTEH, A. H. REFAHI SHEIKHANI, AND F. SHARIFFAR

where Dl = dl

dxl
.

Definition 2.5. [5, 9] Let Θ
(α,β)
n (x) be the Jacobi polynomials of degree n. Then the shifted fractional Jacobi

polynomial(SFJP) is defined as follows:

Θ
(ξ,α,β)
L,n (x) = Θ(α,β)

n

(
2(
x

L
)ξ − 1

)
=

n∑
k=0

Ω
(α,β,n)
k

( x
L

)ξk
, ξ ∈ (0, 1), L > 0, n = 0, 1, 2, . . . , (2.7)

where Ω
(α,β,n)
k = (−1)n−k Γ(n+β+1)Γ(n+k+α+β+1)

Γ(k+β+1)Γ(n+α+β+1)(n−k)!k! . Also, the orthogonal conditions for this shifted fractional Jacobi

polynomial is expressed as follows:

〈Θ(ξ,α,β)
L,i (x),Θ

(ξ,α,β)
L,i′ (x)〉

ω
(ξ,α,β)
L (x)

=

∫
L2

ω
(ξ,α,β)
L

[0,L]

Θ
(ξ,α,β)
L,i (x)Θ

(ξ,α,β)
L,j (x)ω

(ξ,α,β)
L (x)dx = f

(α,β)
L,j δij , (2.8)

where f
(α,β)
L,j = Lξ(α+β+1)Γ(j+α+1)Γ(j+β+1)

(2j+α+β+1)Γ(j+1)Γ(j+α+β+1) and ω
(ξ,α,β)
L (x) = ξ(Lξ − xξ)αxξβ+ξ−1. Suppose FN = {Θ(ξ,α,β)

L,i (x) : i =

0, 1, 2, . . . , N} be the set of SFJPs space. Then any y(x) ∈ L2

ω
(ξ,α,β)
L

[0, L], according to the orthogonal feature (2.8)

can be presented as below:

y(x) =

∞∑
i=0

aiΘ
(ξ,α,β)
L,i (x), (2.9)

where the coefficients ai in the Eq. (2.9) are calculated as:

ai =
(
f

(α,β)
L,i

)−1

〈y(x),Θ
(ξ,α,β)
L,i (x)〉

ω
(ξ,α,β)
L (x)

. (2.10)

Lemma 2.6. The Caputo-Prabhakar fractional derivative of order 0 < µ ≤ 1 for the SFJP is obtained as:

CPDµ
t Θ

(ξ,α,β)
L,n (x) =

n∑
k=0

Ω
(α,β,n)
k

Γ(ξk)

Lξk
tξk−µE−γρ,ξk−µ+1(ωtρ). (2.11)

Proof. Using Eq. (2.3) and Lemma 2.3, we obtain:

CPDµ
t Θ

(ξ,α,β)
L,n (x) = CPDµ

t

( n∑
k=0

Ω
(α,β,n)
k

( x
L

)ξk)
=

n∑
k=0

Ω
(α,β,n)
k

CPDµ
t

( x
L

)ξk
=

n∑
k=0

Ω
(α,β,n)
k

Γ(ξk)

Lξk
tξk−µE−γρ,ξk−µ+1(ωtρ). (2.12)

�

Lemma 2.7. [5] Let x
(α,β)
ρ,q , 0 ≤ q ≤ ρ be the nodes of the standard Jacobi-Gauss(SJG), Jacobi-Gauss-Radau(JGR)

and Jacobi Gauss Lobatto(JGL) interpolations in [−1, 1] and ζ
(α,β)
ρ,q , 0 ≤ q ≤ ρ be the Christoffel numbers of the

SJG, JGR and JGL interpolations in [−1, 1]. Then the Christoffel numbers of the fractional SJG, fractional JGR and
fractional JGL interpolations and their nodes in [0, L] are as:

x
(ξ,α,β)
L,ρ,q = L

[x(α,β)
ρ,q + 1

2

] 1
ξ

, ζ
(ξ,α,β)
L,ρ,q =

[Lξ
2

]α+β+1

ζ(α,β)
ρ,q . (2.13)
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3. The SFJP and trapezoid methods for solving TFPDE-DO

In this section, we describe a numerical method for obtaining approximate solution for the TFPDE-DO. Suppose
the approximate solutions of the TFPDE-DO can be approximated as:

u(x, t) =

∞∑
i=0

∞∑
j=0

υijΘ
(ξ,α1,β1)
L,i (x)Θ

(ξ,α2,β2)
L,j (t)

' un,m(x, t) =

n∑
i=0

m∑
j=0

υij∆ij(x, t), (3.1)

where

∆ij(x, t) = Θ
(ξ,α1,β1)
L,i (x)Θ

(ξ,α2,β2)
L,j (t).

Now to solve TFPDE-DO by using collocation method and trapezoid method, we need to calculate the first and second
partial derivatives, we list the following relations , so we from Eq. (3.1) have:

∂un,m(x, t)

∂x
=

n∑
i=0

m∑
j=0

υij
∂Θ

(ξ,α1,β1)
L,i (x)

∂x
Θ

(ξ,α2,β2)
L,j (t)

=

n∑
i=0

m∑
j=0

υij∆
1
ij(x, t), (3.2)

∂2un,m(x, t)

∂x2
=

n∑
i=0

m∑
j=0

υij
∂2Θ

(ξ,α1,β1)
L,i (x)

∂x2
Θ

(ξ,α2,β2)
L,j (t)

=

n∑
i=0

m∑
j=0

υij∆
2
ij(x, t), (3.3)

∂un,m(x, t)

∂t
=

n∑
i=0

m∑
j=0

υijΘ
(ξ,α1,β1)
L,i (x)

∂Θ
(ξ,α2,β2)
L,j (t)

∂t

=

n∑
i=0

m∑
j=0

υij∆
3
ij(x, t), (3.4)

where

∆1
ij(x, t) =

∂Θ
(ξ,α1,β1)
L,i (x)

∂x
Θ

(ξ,α2,β2)
L,j (t),

∆2
ij(x, t) =

∂2Θ
(ξ,α1,β1)
L,i (x)

∂x2
Θ

(ξ,α2,β2)
L,j (t)

∆3
ij(x, t) = Θ

(ξ,α1,β1)
L,i (x)

∂Θ
(ξ,α2,β2)
L,j (t)

∂t
.
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Using lemma 2.6, a analogous way can be used to obtain the Caputo-Prabhakar fractional derivative, so

CPDµ
t un,m(x, t) =

n∑
i=0

m∑
j=0

υijΘ
(ξ,α1,β1)
L,i (x)CPDµ

t Θ
(ξ,α2,β2)
L,j (t)

=

n∑
i=0

m∑
j=0

j∑
k=0

υijΘ
(ξ,α1,β1)
L,i (x)Ω

(α2,β2,j)
k

× Γ(ξk)

Lξk
tξk−µE−γρ,ξk−µ+1(ωtρ)

=

n∑
i=0

m∑
j=0

υijΘ
(ξ,α1,β1)
L,i (x)∆4

ij(x, t), (3.5)

where

∆4
ij(x, t) =

j∑
k=0

Ω
(α2,β2,j)
k

Γ(ξk)

Lξk
tξk−µE−γρ,ξk−µ+1(ωtρ).

To calculate the left-sided integral in Eq. (1.1), we use the trapezoid method. For this aim, we divide the interval
[0, 1] into P equal subintervals with h = 1

P , so we have:∫ 1

0

c(µ)CPDµ
t u(x, t)dµ ' hc(w0)CPDw0

t u(x, t)

2

+ h

P−1∑
s=1

c(ws)
CPDws

t u(x, t) +
hc(wP )

2
CPDwP

t u(x, t)

' hc(0)u(x, t)

2

+ h

P−1∑
s=1

c(ws)
CPDws

t u(x, t) +
hc(1)

2

∂u(x, t)

∂t
. (3.6)

By substituting Eqs. (3.1), (3.4), and (3.5) into Eq. (3.6), the left-side integral in Eq. (1.1) is approximated as:∫ 1

0

c(µ)CPDµ
t u(x, t)dµ ' hc(0)

2

n∑
i=0

m∑
j=0

υij∆ij(x, t)

+ h

P−1∑
s=1

n∑
i=0

m∑
j=0

c(ws)υij ∆4
ij(x, t)︸ ︷︷ ︸
µ=ws

+
hc(1)

2

n∑
i=0

m∑
j=0

υij∆
3
ij(x, t). (3.7)

By substituting Eqs. (3.1), (3.3), and (3.7) into Eq. (1.1), we can obtain the approximate solution of Eq. (1.1) as:

hc(0)

2

n∑
i=0

m∑
j=0

υij∆ij(x, t) + h

P−1∑
s=1

n∑
i=0

m∑
j=0

c(ws)υij ∆4
ij(x, t)︸ ︷︷ ︸
µ=ws

+
hc(1)

2

n∑
i=0

m∑
j=0

υij∆
3
ij(x, t)

=

n∑
i=0

m∑
j=0

υij∆
2
ij(x, t) + z(x, t,

n∑
i=0

m∑
j=0

υij∆
2
ij(x, t)). (3.8)
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To solve Eq. (3.8), we calculate the residual function at m+ n+ 2 of the given nodes x
(ξ,α1,β1)
L,n,q1

, t
(ξ,α2,β2)
L,m,q2

,
q1 = 0, 1, 2, . . . , n, q2 = 0, 1, 2, . . . ,m as below:

R(x
(ξ,α1,β1)
L,n,q1

, t
(ξ,α2,β2)
L,m,q2

) =
hc(0)

2

n∑
i=0

m∑
j=0

υij∆ij(x
(ξ,α1,β1)
L,n,q1

, t
(ξ,α2,β2)
L,m,q2

) + h

P−1∑
s=1

n∑
i=0

m∑
j=0

c(ws)υij ∆4
ij(x

(ξ,α1,β1)
L,n,q1

, t
(ξ,α2,β2)
L,m,q2

)︸ ︷︷ ︸
µ=ws

+
hc(1)

2

n∑
i=0

m∑
j=0

υij∆
3
ij(x

(ξ,α1,β1)
L,n,q1

, t
(ξ,α2,β2)
L,m,q2

) −
n∑
i=0

m∑
j=0

υij∆
2
ij(x

(ξ,α1,β1)
L,n,q1

, t
(ξ,α2,β2)
L,m,q2

)

− z(x
(ξ,α1,β1)
L,n,q1

, t
(ξ,α2,β2)
L,m,q2

,

n∑
i=0

m∑
j=0

υij∆
2
ij(x

(ξ,α1,β1)
L,n,q1

, t
(ξ,α2,β2)
L,m,q2

)) = 0. (3.9)

By solving Eq. (3.9), the coefficients υij are calculated.

4. Error analysis

In this section, we prove the error analysis for the solution of Eq. (1.1) by using the proposed method.

Theorem 4.1. Let CPDiµ
x

(
CPDjµ′

t u(x, t)
)
∈ C

(
[0, 1]×[0, 1]

)
that i = 0, 1, 2, . . . , n, j = 0, 1, 2, . . . ,m and the sequence

Pn,m(x, t) ∈ FN be the best approximation solution of u(x, t) that u(x, t) is the exact solution of Eq. (1.1). Then the
error bound is obtained as:

‖ u(x, t)− Pn,m(x, t) ‖2≤
Υµ,µ′

n,mΓ(1 + α)

Γ(nµ+ 1)Γ(mµ′ + 1)

√
Γ(3 + 2(n− 1) + β)Γ(3 + 2(m− 1) + β)

Γ(4 + 2(n− 1) + α+ β)Γ(4 + 2(m− 1) + α+ β)
, (4.1)

where Υµ,µ′

n,m = sup(x,t)∈[0,1]×[0,1]

∣∣∣CPDiµ
x

(
CPDjµ′

t u(x, t)
)
u(x, t)

∣∣∣.
Proof. We use the Taylor’s relation [39] using the Caputo-Prabhakar fractional derivative for multi-variable. So, we
have: ∣∣∣u(x, t)−

n−1∑
i=0

m−1∑
j=0

xiµtjµ
′

Γ(iµ+ 1)Γ(jµ′ + 1)
CPDiµ

x

(
CPDjµ′

t u(x, t)
∣∣∣
(0,0)

)∣∣∣ ≤ xnµtmµ
′

Γ(nµ+ 1)Γ(mµ′ + 1)
Υµ,µ′

n,m , (4.2)

where Υµ,µ′

n,m = sup(x,t)∈[0,1]×[0,1]

∣∣∣CPDiµ
x

(
CPDjµ′

t u(x, t)
)
u(x, t)

∣∣∣. Since Pn,m(x, t) ∈ FN is the best approximation

solution of u(x, t), then for any Ψn,m(x, t) ∈ FN the following relation hold:

‖ u(x, t)− Pn,m(x, t) ‖2≤‖ u(x, t)−Ψn,m(x, t) ‖2, (4.3)

where in the above relation Ψn,m(x, t) =
∑n−1
i=0

∑m−1
j=0

xiµtjµ
′

Γ(iµ+1)Γ(jµ′+1)
CPDiµ

x

(
CPDjµ′

t u(x, t)
∣∣∣
(0,0)

)
is considered. Using

Eqs. (4.2) and (4.3), so

‖ u(x, t)− Pn,m(x, t) ‖22 ≤‖ u(x, t)−
n−1∑
i=0

m−1∑
j=0

xiµtjµ
′

Γ(iµ+ 1)Γ(jµ′ + 1)
CPDiµ

x

(
CPDjµ′

t u(x, t)
∣∣∣
(0,0)

)
‖22

≤
(Υµ,µ′

n,m)2

(Γ(nµ+ 1)Γ(mµ′ + 1))2

∫ 1

0

x2nµω
(µ,α,β)
L (x)dx

∫ 1

0

t2mµ
′
ω

(µ′,α,β)
L (t)dt

=
(Υµ,µ′

n,m)2(Γ(1 + α))2Γ(3 + 2(n− 1) + β)Γ(3 + 2(m− 1) + β)

(Γ(nµ+ 1)Γ(mµ′ + 1))2Γ(4 + 2(n− 1) + α+ β)Γ(4 + 2(m− 1) + α+ β)
, (4.4)

where
∫ 1

0
x2nµω

(µ,α,β)
L (x)dx and

∫ 1

0
t2mµ

′
ω

(µ′,α,β)
L (t)dt in [9] calculated. By taking the square roots of Eq. (4.4), the

proof is completed. �



578 M. KHASTEH, A. H. REFAHI SHEIKHANI, AND F. SHARIFFAR

Theorem 4.2. Let u(x, t) is the exact solution of Eq. (1.1), un,m(x, t) is its approximate solution which is obtained
by the suggested method and Pn,m(x, t) ∈ FN be the best approximation solution of u(x, t). Then

‖ u(x, t)− un,m(x, t) ‖2 ≤
Υµ,µ′

n,mΓ(1 + α)

Γ(nµ+ 1)Γ(mµ′ + 1)

√
Γ(3 + 2(n− 1) + β)Γ(3 + 2(m− 1) + β)

Γ(4 + 2(n− 1) + α+ β)Γ(4 + 2(m− 1) + α+ β)

+ ‖ Vn,m − V̄n,m ‖2

√√√√ n∑
i=0

m∑
j=0

f
(α,β)
L,i f

(α,β)
L,j , (4.5)

where Vn,m = [υ00, υ01, . . . , υ0m, . . . , υnm]T and V̄n,m = [Λ00,Λ01, . . . ,Λ0m, . . . ,Λnm]T .

Proof. We consider un,m(x, t) =
∑n
i=0

∑m
j=0 υij∆ij(x, t) and Pn,m(x, t) =

∑n
i=0

∑m
j=0 Λij∆ij(x, t), then we have:

‖ u(x, t)− un,m(x, t) ‖2≤‖ u(x, t)− Pn,m(x, t) ‖2 + ‖ Pn,m(x, t)− un,m ‖2, (4.6)

using Eq. (4.1), we obtain:

‖ u(x, t)− un,m(x, t) ‖2 ≤
Υµ,µ′

n,mΓ(1 + α)

Γ(nµ+ 1)Γ(mµ′ + 1)

√
Γ(3 + 2(n− 1) + β)Γ(3 + 2(m− 1) + β)

Γ(4 + 2(n− 1) + α+ β)Γ(4 + 2(m− 1) + α+ β)

+ ‖
n∑
i=0

m∑
j=0

υij∆ij(x, t)−
n∑
i=0

m∑
j=0

Λij∆ij(x, t) ‖2 . (4.7)

We calculate ‖
∑n
i=0

∑m
j=0 υij∆ij(x, t)−

∑n
i=0

∑m
j=0 Λij∆ij(x, t) ‖2 in the equation (4.7), so

‖
n∑
i=0

m∑
j=0

υij∆ij(x, t)−
n∑
i=0

m∑
j=0

Λij∆ij(x, t) ‖22=

∫ T

0

∫ L

0

∣∣∣ n∑
i=0

m∑
j=0

(
υij − Λij

)
∆ij(x, t)

∣∣∣ω(ξ,α,β)
L (x)ω

(ξ,α,β)
L (t)dxdt

≤
∫ T

0

∫ L

0

( n∑
i=0

m∑
j=0

∣∣∣υij − Λij

∣∣∣2)( n∑
i=0

m∑
j=0

∣∣∣∆ij(x, t)
∣∣∣2)ω(ξ,α,β)

L (x)ω
(ξ,α,β)
L (t)dxdt

=

n∑
i=0

m∑
j=0

∣∣∣υij − Λij

∣∣∣2 n∑
i=0

m∑
j=0

∫ T

0

∫ L

0

∣∣∣∆ij(x, t)
∣∣∣2)ω(ξ,α,β)

L (x)ω
(ξ,α,β)
L (t)dxdt

=‖ Vn,m − V̄n,m ‖22
n∑
i=0

m∑
j=0

‖ ∆ij(x, t) ‖22

=‖ Vn,m − V̄n,m ‖22
n∑
i=0

m∑
j=0

f
(α,β)
L,i f

(α,β)
L,j , (4.8)

where Vn,m = [υ00, υ01, . . . , υ0m, . . . , υnm]T and V̄n,m = [Λ00,Λ01, . . . ,Λ0m, . . . ,Λnm]T . By substituting Eq. (4.8) in
the Eq. (4.7), we obtain:

‖ u(x, t)− un,m(x, t) ‖2 ≤
Υµ,µ′

n,mΓ(1 + α)

Γ(nµ+ 1)Γ(mµ′ + 1)

√
Γ(3 + 2(n− 1) + β)Γ(3 + 2(m− 1) + β)

Γ(4 + 2(n− 1) + α+ β)Γ(4 + 2(m− 1) + α+ β)

+ ‖ Vn,m − V̄n,m ‖2

√√√√ n∑
i=0

m∑
j=0

f
(α,β)
L,i f

(α,β)
L,j . (4.9)

Then, the proof is proven. �
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5. Numerical results

This section provides two numerical examples that by the suggested method solved. For accuracy and precision of
our numerical experiences, we have employed the Matlab 2018b software with a PC of 3 GHz CPU and 6 GB memory.
We consider the absolute error as:

eError(x, t) = |u(x, t)− un,m(x, t)|, (5.1)

where u(x, t) is the exact solution of Eq. (1.1) and un,m(x, t) is its approximate solution.

Figure 1. Diagram of the approximate solution for Example 5.1 with different values of
α1, β1, α2, β2, ξ and µ.
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Figure 2. Diagram of the absolute error for Example 5.1 with different values of α1, β1, α2, β2, ξ, µ
and n = 4,m = 8.

Table 1. The absolute error between the exact and approximate solutions for different values of µ
for Example 5.1.

ξ (n,m) the suggested method for µ = 0.5 the suggested method for µ = 0.99
at (α1 = −0.5, β1 = 0, α2 = 0.5, β2 = 0) at (α1 = −0.5, β1 = 0, α2 = 0.5, β2 = 0)

(4, 4) 1.164e− 11 7.840e− 12
(6, 6) 1.900e− 13 1.536e− 13

1
2 (8, 8) 2.604e− 14 1.536e− 14

(10, 10) 9.651e− 15 9.423e− 15
(12, 12) 2.604e− 16 7.840e− 17
(4, 4) 5.099e− 16 4.524e− 16
(6, 6) 9.743e− 17 9.324e− 17

1
3 (8, 8) 9.900e− 18 9.804e− 18

(10, 10) 8.399e− 18 8.063e− 19
(12, 12) 4.815e− 19 6.156e− 20

Example 5.1. We consider the Eq. (1.1) with

c(µ) = Γ(3− µ), z(x, t, u(x, t)) =
tµEγρ,µ+1(ωtρ)

Γ(3− µ)
+ x(2− x).

For this example we consider the initial and boundary conditions with u(0, t) = u(2, t) = u(x, 0) = 0, x ∈ (0, 2), t ∈
[0, 1]. The exact solution for this problem given by u(x, t) =

x(2−x)tµEγρ,µ+1(ωtρ)

Γ(3−µ) . This Ex. 5.1, by the proposed method

is solved and the numerical results for different values of α1, β1, α2, β2, ξ and µ in Fig. 1 are drawn. Plot of the absolute
error for different choices of α1, β1, α2, β2, ξ and µ in Fig. 2 are shown. Table 1 show that the our proposed method
can gain a well approximation of the exact solution.
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Figure 3. Diagram of the approximate solution for Example 5.2 with different values of
α1, β1, α2, β2, ξ and µ.

Figure 4. Diagram of the absolute error for Ex. 5.2 with different values of α1, β1, α2, β2, ξ, µ and
n = 4,m = 8.
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Table 2. The absolute error between the exact and approximate solutions for different values of µ
for Example 5.2.
ξ (n,m) the suggested method for µ = 0.5 the suggested method for µ = 0.99

at (α1 = −0.5, β1 = 0, α2 = 0.5, β2 = 0) at (α1 = −0.5, β1 = 0, α2 = 0.5, β2 = 0)
(4, 4) 1.204e− 12 5.640e− 14
(6, 6) 2.463e− 13 2.356e− 15

1
2 (8, 8) 2.484e− 14 2.244e− 16

(10, 10) 2.496e− 15 1.716e− 17
(12, 12) 2.435e− 16 1.344e− 18
(4, 4) 3.840e− 12 7.360e− 13
(6, 6) 1.056e− 14 1.344e− 15

1
3 (8, 8) 2.304e− 16 2.400e− 17

(10, 10) 2.500e− 18 2.484e− 19
(12, 12) 2.176e− 20 1.716e− 21

Example 5.2. Consider the Eq. (1.1) with

c(µ) = 1, z(x, t, u(x, t)) = x(x− 1)− 2tµEγρ,µ+1(ωtρ).

The initial and boundary given by u(0, t) = u(1, t) = u(x, 0) = 0, x ∈ (0, 1), t ∈ (0, 1]. The exact solution is given by
u(x, t) = x(x− 1)tµEγρ,µ+1(ωtρ). Fig. 3 presents the numerical results of the approximate solution of this example for

various values of α1, β1, α2, β2, ξ and µ ∈ (0, 1]. Plot of the absolute error for different choices of α1, β1, α2, β2, ξ and
µ with ρ = ω = 1 in Fig. 4 are shown. This example by the introduced method in this paper solved and its numerical
results are shown in Table 2. Table 2 presents that we can get a good approximation of the exact solution by using
the proposed method in this paper.

6. Conclusions

In this paper, we provided a numerical technique based on the fractional Jacobi polynomials for solving the dis-
tributed order time-fractional partial differential equation. In the developed technique, the time derivative has been
approximated by a combined method based on the shifted fractional-order Jacobi and trapezoid method. Error anal-
ysis of the numerical technique was demonstrated. We expressed two numerical examples to propound the success
of the technique. All numerical calculations were accomplished in sensible accuracy and with proportionately small
number of degrees of independence. The numerical results show that this method is more accurate and efficient than
other methods.
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