تعداد نشریات | 44 |
تعداد شمارهها | 1,295 |
تعداد مقالات | 15,838 |
تعداد مشاهده مقاله | 52,095,591 |
تعداد دریافت فایل اصل مقاله | 14,875,349 |
سنتز نانوکود آهسته رهش روی و مس و تاثیر آنها برفراهمی این عناصر در کاهو | ||
دانش آب و خاک | ||
مقاله 11، دوره 34، شماره 2، تیر 1403، صفحه 163-180 اصل مقاله (964.18 K) | ||
شناسه دیجیتال (DOI): 10.22034/ws.2023.58243.2534 | ||
نویسندگان | ||
محبوبه جلالی* 1؛ مجتبی آهور2 | ||
1استادیار گروه علوم و مهندسی خاک، دانشکده کشاورزی، دانشگاه لرستان، خرم آباد، ایران | ||
2دکتری مهندسی منابع آب، پارک علم و فناوری لرستان، خرم آباد، ایران | ||
چکیده | ||
مشکلات زیست محیطی و راندمان پایین کودها، انگیزهای برای تولید کودهای جدید با رهایش کندتر و عملکرد بهتر فراهم می کند. در این مطالعه، از نانوصفحات اکسید گرافن به عنوان حاملهای جدید با ظرفیت زیاد برای بارگیری ریزمغذیهای گیاهی روی و مس و کاربرد آنها برای تولید کودهای جدید با رهایش پایدار و آهسته استفاده شد. ترکیب شیمیایی و بارگذاری موفقیتآمیز هر دو عنصر بر روی صفحات اکسید گرافن توسط طیفسنجی فروسرخ تبدیل فوریه و طیفسنجی فوتوالکترون اشعه ایکس تأیید شد. رهاسازی عناصر روی و مس از کودهای اکسید گرافن -روی (Zn-GO) و اکسید گرافن- مس (Cu-GO) سنتز شده در این مطالعه در مقایسه با کودهای سولفات روی و سولفات مس تجاری به مراتب سریعتر و آهسته تر بود. همچنین، گرانولهای اکسید گرافن- روی و اکسید گرافن- مس به ترتیب تنها 45 و 49 درصد از مواد مغذی خود را در مقایسه با 100 درصد گرانولهای سولفات روی و سولفات مس در شرایط مشابه آزاد کردند. در مورد کودهای سولفات روی و اکسید گرافن -روی، مقادیر مشابهی از روی در بیش از 9 میلیمتر از گرانولها، به ترتیب 28 و 25٪، به دست آمد. در خاک با سولفات مس و اکسید گرافن -مس، به ترتیب 29 و 18 درصد از کود مس در بیش از 9 میلیمتر بازیافت شد. همچنین نتایج نشان داد که جذب روی و مس توسط کاهو هنگام استفاده از کودهای اکسید گرافن در مقایسه با استفاده از نمکهای استاندارد روی یا مس بیشتر بود. | ||
کلیدواژهها | ||
اکسید گرافن؛ حامل؛ رهایش؛ کود؛ عناصر ریز مغذی | ||
مراجع | ||
Albrecht TWJ, Addai-Mensah J and Fornasiero D, 2011. Effect of pH, concentration and temperature on copper and zinc hydroxide formation/precipitation in solution. Pp. 2100–2110. In: Chemeca 2011: Engineering a Better World: Sydney Hilton Hotel, NSW, Australia.
Bhattacharya N, Kochar M, Himadri B, Yang W and Cahill D, 2023. Biologically synthesized and indole acetic acid-loaded graphene as biostimulants for maize growth enhancement. ACS Agricultural Science & Technology3(5):432-444.
Bremmer JM and Mulvancey, CS, 1982. Total nitrogen. Pp. 595-624. In: Page AL, Miller RH and Keeney DR. (Ed.), Method of Soil Analysis. Part II. Agron. Monograph 9, ASA and SSSA, Madison, WI. USA.
Degryse F, Baird R and McLaughlin M, 2015. Diffusion and solubility control of fertilizer-applied zinc: chemical assessment and visualization. Plant and Soil 386: 195-204.
Gee GW and Bauder JW, 1986. Particle size analysis. Pp. 383 -411. In: Klute A, (Ed.), Methods of Soil Analysis. Part 1, Physical and Mineralogical Methods. 2nd Ed., ASA, Madison, WI. USA.
Gil-Ortiz R, Naranjo MÁ, Ruiz-Navarro A, Atares S, García C, Zotarelli L, San Bautista A and Vicente O, 2020. Enhanced agronomic efficiency using a new controlled-released, polymeric-coated nitrogen fertilizer in rice. Plants9:1183.
Hassan MU, Chattha MU, Ullah A, Khan I, Qadeer A, Aamer M, Khan AU, Nadeem F and Khan TA, 2019. Agronomic biofortification to improve productivity and grain Zn concentration of bread wheat. International Journal of Agriculture and Biology21:615-620.
Hassan MU, Aamer M, Chattha MU, Haiying T, Shahzad B, Barbanti L, Nawaz M, Rasheed A, Afzal A and Liu Y,2020. The critical role of zinc in plants facing the drought stress. Agriculture10(9):396.
Haluschak P, 2006. Laboratory methods of soil analysis. Canada-Manitoba Soil Survey, 3-133.
Kabiri S, Tran DNH, Cole MA and Losic D, 2016. Functionalized three-dimensional (3D) graphene composite for high efficiency removal of mercury. Environmental Science: Water Research & Technology 2: 390-402.
Lim SF and Lee A, 2015. Kinetic study on removal of heavy metal ions from aqueous solution by using soil. Environmental Science and Pollution Research 22: 10144−10158.
Loeppert RH and Suarez DL, 1996. Carbonate and gypsum. Pp. 437- 474. In: Sparks DL, (eds). Methods of Soil Analysis. Part 3. 3rd ed. Soil Science Society of America and American Society of Agronomy, Madison, Wisconsin, USA.
Knudsen D, Peterson G A and Pratt PF, 1982. Lithium, sodium, and potassium. Pp. 225-246. Methods of Soil Analysis. Part 2. Chemical and Microbiological Properties. Soil Science Society of America and American Society of Agronomy, Madison, Wisconsin, USA.
Madadrang CJ, Kim HY, Gao G, Wang N, Zhu J, Feng H, Gorring M, Kasner ML, and Hou S, 2012. Adsorption behavior of EDTA-graphene oxide for Pb (II) removal. ACS Applied Materials & Interfaces 4:1186- 1193.
Milani N, McLaughlin MJ, Stacey SP, Kirby JK, Hettiarachchi GM, Beak DG and Cornelis G, 2012. Dissolution kinetics of macronutrient fertilizers coated with manufactured zinc oxide nanoparticles. Journal of Agricultural and Food Chemistry 60: 3991-3998.
Sparks DL, 1996. Methods of Soil Analysis (SSSA, ASA Publishing: Madison), Madison, Wisconsin, USA.
Shabbir Z, Sardar A, Shabbir A, Abbas G, Shamshad S, Khalid S, Murtaza G, Dumat C and Shahid M, 2020. Copper uptake, essentiality, toxicity, detoxification and risk assessment in soil-plant environment. Chemosphere259:127436.
Sitko R, Turek E, Zawisza B, Malicka E, Talik E, Heimann J, Gagor A, Feist B and Wrzalik R, 2013. Adsorption of divalent metal ions from aqueous solutions using graphene oxide. Dalton Transactions 42: 5682-5689.
Tran DNH, Kabiri S and Losic D, 2014. A green approach for the reduction of graphene oxide nanosheets using non-aromatic amino acids. Carbon 76:193-202.
Trenkel ME, 2010. Slow-and Controlled-Release and Stabilized Fertilizers: An Option for Enhancing Nutrient Use Efficiency in Agriculture. IFA, International Fertilizer Industry Association; Berlin, Germany.
Vejan P, Khadiran T, Abdullah R and Ahmad N, 2021.Controlled release fertilizer: A review on developments, applications and potential in agriculture. Journal of Controlled Release 339: 321-334.
Wang X, Liu C, Li H, Zhang H, Ma R, Zhang Q, Yang F, Liao Y, Yuan W and Chen F, 2019. Metabonomics-assisted label-free quantitative proteomic and transcriptomic analysis reveals novel insights into the antifungal effect of graphene oxide for controlling Fusarium graminearum. Environmental Science: Nano 6: 3401–3421.
Yang D, Velamakanni A, Bozoklu G, Park S, Stoller M, Piner RD, Stankovich S, Jung I, Field DA, Ventrice Jr and Ruoff RS, 2009. Chemical analysis of graphene oxide films after heat and chemical treatments by X-ray photoelectron and Micro-Raman spectroscopy. Carbon 47: 145-153.
Yu Y, Addai-Mensah J and Losic D, 2012. Functionalized diatom silica microparticles for removal of mercury ions. Science and Technology of Advanced Materials 13: 015008.
Zhao G, Ren X, Gao X, Tan X, Li J, Chen C, Huang Y and Wang X, 2011. Removal of Pb(ii) ions from aqueous solutions on fewlayered graphene oxide nanosheets. Dalton Transactions 40:10945− 10952.
Zhao G, Wen T, Yang X, Yang S, Liao J, Hu J, Shao D and Wang X, 2012. Preconcentration of U(vi) ions on few-layered graphene oxide nanosheets from aqueous solutions. Dalton Transactions 41: 6182−6188. | ||
آمار تعداد مشاهده مقاله: 265 تعداد دریافت فایل اصل مقاله: 101 |