تعداد نشریات | 44 |
تعداد شمارهها | 1,302 |
تعداد مقالات | 16,020 |
تعداد مشاهده مقاله | 52,485,354 |
تعداد دریافت فایل اصل مقاله | 15,212,988 |
بررسی تغییرات بعد فرکتالی و دقت مدلهای فراکتالی توزیع اندازه ذرات در زیرحوضه امامزاده ابراهیم گیلان | ||
دانش آب و خاک | ||
مقاله 12، دوره 34، شماره 1، فروردین 1403، صفحه 201-216 اصل مقاله (859.93 K) | ||
شناسه دیجیتال (DOI): 10.22034/ws.2021.40951.2365 | ||
نویسندگان | ||
عیسی ابراهیمی1؛ حسین اسدی* 2؛ حسین بیات3 | ||
1علوم خاک، دانشکده علوم کشاورزی، دانشگاه گیلان | ||
2علوم خاک، دانشکده مهندسی و فناوری کشاورزی، دانشگاه تهران | ||
3علوم خاک، دانشکده کشاورزی، دانشگاه بوعلی سینا | ||
چکیده | ||
توزیع اندازه ذرات یکی از مهمترین ویژگیهای خاک است که معادلات مختلف فراکتالی برای توصیف بهتر آنها در دهههای اخیر ارایه شده است. هدف از انجام این مطالعه بررسی تغییرات ابعاد فراکتالی محاسبه شده با معادلات مختلف در در زیرحوضه امام زاده ابراهیم واقع در استان گیلان بود. برای انجام این پژوهش تعداد 93 نمونه خاک از مناطق مختلف حوضه با کاربری، فرسایش و نوع پوشش گیاهی گواناگون جمعآوری شد. توزیع اندازه ذرات در نمونهها اندازهگیری شد. سه مدل فراکتالی بیرد، پریر-بیرد و تیلور- ویتکرفت بر اطلاعات برازش داده شد. نتایج نشان داد که مدل بیرد، پریر-بیرد نسبت به مدل تیلور- ویتکرفت دارای ریشه میانگین مربعات خطا (RMSE) کمتری بودند (RMSE برای مدل بیرد-پریر و مدل بیرد برابر 3/8 و برای مدل تیلور-ویتکرفت برابر با 3/29 است). مقدار بعد فراکتالی به دست آمده از مدل بیرد (73/2) نسبت به دو مدل دیگر یعنی مدل پریر- بیرد (94/2) و تیلور-ویتکرفت (95/2) کوچکتر بود. نتایج به دست آمده از این پژوهش نشان داد که مدلهای فراکتالی در خاکهای مختلف دارای دقت متفاوتی هستند. همچنین نتایج نشان داد که بعد فراکتالی هر سه مدل مورد مطالعه با رس دارای رابطه غیر خطی مثبت و با شن دارای رابطه خطی منفی هستند. به طور کلی نتایج نشان داد توزیع اندازه ذرات و درنتیجه بعد فراکتالی تابعی از نوع خاک، پوشش و کاربری اراضی است و مدلهای دو پارامتری به دلیل انعطافپذیری بیشتر، دارای دقت بیشتری برای توصیف توزیع اندازه ذرات خاک هستند. | ||
کلیدواژهها | ||
اراضی جنگلی؛ بافت خاک؛ بیرد؛ تیلور-ویتکرفت؛ مراتع تخریب شده | ||
مراجع | ||
Ahmadi A, Neyshabouri MR and Asadi H, 2010. Relationship between fractal dimension of particle size distribution and some physical properties of soils. Water and Soil Science-University of Tabriz 20(4):73-81. (In Persian with English abstract).
Ajmi M, Khormali F and Ayobi S, 2010. Application of neural network for prediction of Earthen Dam Peak Breach outflow, and Breach Time. Iranian Journal of Soil and Water Research 39(1):10-30. (In Persian with English abstract).
Arya LM and Paris JF, 1981. A physicoempirical model to predict soil moisture characteristics from particle-size distribution and bulk density data. Soil Science Society of America Journal 45:1023-1030.
Babrnejad Ziarat H, Zolfaghari AA, Yazdani MR, Hashemi AA and Kiyaniyan MK, 2017. Evaluation of fractal models in describing particle size distribution of sediment (Case of study: Fooladmahale of Semnan). Journal of Watershed Management Research 8(15):61-72. (In Persian with English abstract).
Bagherifam S, Karimi AR, Lakzian A and Izanloo E, 2013. Effects of land use management on soil organic carbon, particle size distribution and aggregate stability along hillslope in semi-arid areas of northern Khorasan. Journal of Water and Soil Conservation 20(4):51-73. (In Persian with English abstract).
Bayat H and Ebrahimi E, 2016. Effects of various input levels and different soil water retention curve models on water content estimation using different statistical methods. Hydrology Research 47(2):312-332.
Bayat H, 2008. Establishment of transfer functions to predict the retention curve through artificial neural networks using fractal parameters and principal component analysis. Ph.D thesis, University of Tabriz, Iran, 180 p. (in Persian with English abstract).
Bayat H, Javanshir S, Davatgar N and Neyshabouri MR, 2013. The effect of parameters of particle and aggregate size distribution on the point estimation of soil water retention curve. Journal of Water and Soil Conservation 20(4):27-49. (In Persian with English abstract).
Beigi Harchegani H and Banitalebi G, 2015. Comparison of methods of determining texture fractal dimension: A case study of the soils of Taqanak, Shahrekord. Journal of Hydrology and Soil Science 18(70):327-339. (In Persian with English abstract).
Bird NRA, Perrier E and Rieu M, 2000. The water retention function for a model of soil structure with pore and solid fractal distributions. European Journal of Soil Science 51:55-63.
Bittelli M, Campbell GS and Flury M, 1999. Characterization of particle-size. Geoderma 63:782–788.
Boroumand M, Ghajar Sepanlu M and Bahmanyar MA, 2014. The effect of land use change on some of the physical and chemical properties of soil (Case study: Semeskande area of Sari). Journal of Watershed Management Research 5(9): 78-94. (in Persian with English abstract).
Buchan GD, 1989. Applicability of the simple lognormal model to particle-size distribution in soils. Soil Science 147:155-161.
Cui Y, Lia J, Chen A, Wu J, Luo Q, Rafay L, He J, Liu Y, Wang D, Lin Y and Chengzhen WCh, 2019. Fractal dimensions of trapped sediment particle size distribution can reveal sediment retention ability of common plants in a dry-hot valley. Catena 180:252–262.
Filgueira RR, Fournier LL, Cerisola CI, Gelati P and Garcia MG, 2006. Particle-size distribution in soils: A critical study of the fractal model validation. Geoderma 134:327-334
Gee GW and Or D, 2002. Particle-size and analysis. In: Warren AD. (Ed.). Methods of Soil Analysis. Part 4. Physical Methods. Pp. 255-295. Madison. WI, USA: Soil Science Society of America.
Hwang SI, Lee KP, Lee DS and Powers SE, 2002. Models for estimating soil particle-size distributions. Soil Science Society of America Journal 66:1143–1150.
Jorreh M, Bayat H, Safari Sanjani AA and Davatghar N, 2013. Estimation of soil penetration resistance using fractal parameters of particle and aggregate size distributions. Water and Soil Science-University of Tabriz 23(2):13-27. (in Persian with English abstract)
Kravchenko A and Zhang R, 1998. Estimating the soil water retention from particle-size distributions: A fractal approach. Soil Science 163:171-179.
Kutlu T, Ersahin S and Yetgin B, 2008. Relations between solid fractal dimension and some physical properties of soils formed over alluvial and colluvial deposits. Journal of Food, Agriculture and Environment 6:445-449.
Millan H, Gonzalez-Posada M, Aguilar M, Dominguez J and Cespedes L, 2003. On the fractal scaling of soil data particle-size distributions. Geoderma 117:117-128.
Mohammadian Khorasani S, Homaee M and Pazira E, 2018. Evaluating the efficiency of fractal models in estimating soil hydraulic parameters and the relationship between moisture curvature fractal dimensions with these parameters. Journal of Soil and Water Resources Conservation 7(4):15-24. (In Persian with English abstract).
Perrier EMA and Bird NRA, 2002. Modelling soil fragmentation: The pore solid fractal approach. Soil and Tillage Research 64(1–2):91–99.
Quijano L, Kuhn NJ and Navas A, 2020. Effects of interrill erosion on the distribution of soil organic and inorganic carbon in different sized particles of Mediterranean Calcisols. Soil and Tillage Research 196:104461.
Raclot D, Le Bissonnais Y, Annabi M, Sabir M and Smetanova A, 2018. Main Issues for Preserving Mediterranean Soil Resources from Water Erosion under Global Change. Land Degradation & Development 29(3):789–799.
Roades JD, 1996. Salinity: electrical conductivity and total dissolved solids. Pp. 417–436. In: Method of Soil Analysis, Part 3: Chemical Methods, Madison, Wisconsin.
Su YZ, Zhao HL, Zhao WZ and Zhang TH, 2004. Fractal features of soil particle size distribution and the implication for indicating desertification. Geoderma 122:43-49.
Taj Khalili N, Saedi S and Baybardi A, 2011. Evaluation of some soil properties from forest to pasture and agricultural lands in Arasbaran protected area. 12th Congress of Soil Sciences. September 21-23. Tabriz. Iran. (In Persian)
Thomas GW, 1996. Soil pH and soil acidity. Pp. 475–490. In: Sparks DL (ed) Methods of Soil Analysis, Part 3: Chemical Methods. SSSA book series, vol 5. Soil Science Society of America Journal, Madison, Wisconsin,
Turudu OA, 1981. Investigation of some physical and chemical properties of spruce forest, beech forest and meadow and maize farmland soils located same aspects in Trabzon-Hamsikoy province. Kardeniz Technical University Forestry Faculty Publication Number-13, Kardeniz Technical University Press, Trabzon.
Tyler SW and Wheatcraft SW, 1992. Fractal scaling of soil particle-size distributions: analysis and limitations. Soil Science Society of America Journal 56:362-369.
Vahabzadeh Kebria G, Reiahi MR and Roshun SH, 2016. Investigation of land use change on physicochemical characteristics and soil erosion in Kaftargar basin of Behshahr. Journal of Environmental Erosion Research 6(2):75-88. (In Persian with English abstract).
Walkey A and Black IA, 1934. An Examination of the Degtjareff method for determining soil organic matter and a proposed modification of the chromic acid titration method. Soil Science 37:29–38
Wang L and Shi ZH, 2015. Size selectivity of eroded sediment associated with soil texture on steep slopes. Soil Science Society of America Journal 79:917–929
Wang Y, Zhang XC, Zhang JL and Li SJ, 2009. Spatial variability of soil organic carbon in a watershed on the loess plateau. Pedosphere. 19:486-495
Xiao L, Sha X, GuoBin L and Chao Z, 2014. Fractal features of soil profiles under different land use patterns on the Loess Plateau, China. Journal of Arid Land 6:550-560.
Young IM, Crawford JW and Rappoldt C, 2001. New method and models for characterizing structural heterogeneity of soil. Soil and Tillage Research 61:33-45.
Yue L, Juying J, Bingzhe T, Binting C and Hang L, 2020. Response of runoff and soil erosion to erosive rainstorm events and vegetation restoration on abandoned slope farmland in the Loess Plateau region, China. Journal of Hydrology 584: 124694.
Zhang Y, Zhong X, Lin J, Zhao D, Jiang F, Wang MK, Ge H and Huang Y, 2020. Effects of fractal dimension and water content on the shear strength of red soil in the hilly granitic region of southern China. Geomorphology 351:106956.
Zhao P, Shao M and Horton R, 2011. Performance of soil particle-size distribution Models for describing deposited soils adjacent to constructed dams in the China Loess Plateau. Acta Geophysica 59:124-138.
Zhao P, Shao M and Zhuang J, 2009. Fractal features of particle size redistributions of deposited soils on the dam farmlands. Soil Science 174:403-407.
| ||
آمار تعداد مشاهده مقاله: 144 تعداد دریافت فایل اصل مقاله: 146 |