- [1] M. Bahmanpour, M. Tavassoli Kajani, and M. Maleki, Solving Fredholm integral equations of the first kind using Muntz wavelets, Applied Numerical Mathematics, 143 (2019), 159–171.
- [2] C. TH. Baker and E. Buckwar, Numerical analysis of explicit one-step methods for stochastic delay differential equations, LMS J. Comput. Math., 3 (2000), 315–335.
- [3] S. Davaeifar and J. Rashidinia, Solution of a system of delay differential equations of multi pantograph type, Journal of Taibah University for Science, 11 (2017), 1141-1157.
- [4] K. Diethelm, An algorithm for the numerical solution of differential equations of fractional order, Electron. Trans. Numer. Anal., 5 (1997) 1-6.
- [5] D. J. Evans and K. R. Raslan, The Adomian decomposition method for solving delay differential equation, Int. J. Comput. Math., 82(1) (2005), 49-54.
- [6] Z. Frazaneh Bonab and M. Javidi, Higher order methods for fractional differential equation based on fractional backward differentiation formula of order three, Mathematics and Computers in Simulation, (2020).
- [7] L. Galeone and R. Garrappa, Second Order Multistep Methods for Fractional Differential Equations, Technical Report 20/2007, Department 19 of Mathematics, University of Bari, 2007.
- [8] R. Garrappa, On linear stability of predictor-corrector algorithms for fractional differential equations, Int. J. Comput. Math., 87(10) (2010), 2281-2290.
- [9] S. Irandoust-Pakchina, S. Abdi-Mazraeha and Sh. Rezapour, Stability properties of fractional second linear multistep methods in the implicit form: Theory and applications, Filomat 37(21) (2023).
- [10] A. Isah, C. Phang, and P. Phang, Collocation method based on Genocchi operational matrix for solving generalized fractional pantograph equations, Hindawi International Journal of Differential Equations, (2017).
- [11] D. Li and M. Z. Liu, Runge-Kutta methods for the multi-pantograph delay equation, Appl. Math. Comput., 163 (2005), 383–395.
- [12] C. Lubich, Discretized fractional calculus, SIAM J. Math. Anal., 17(3) (1986), 704-719.
- [13] M. Maleki and M. Tavassoli Kajani, Numerical approximations for Volterra’s population growth model with fractional order via a multi-domain pseudospectral method, Applied Mathematical Modelling, 39(15) (2015), 4300– 4308.
- [14] B. P. Moghaddam, Z. S. Mostaghim, A. A. Pantelous, and J. A. T. Machado, An integro quadratic spline-based scheme for solving nonlinear fractional stochastic differential equations with constant time delay, Communications in Nonlinear Science and Numerical Simulation, 92 105475.
- [15] P. Mokhtary, B. P. Moghaddam, A. M. Lopes, and J. A. Tenreiro Machado, A computational approach for the nonsmooth solution of non-linear weakly singular Volterra integral equation with proportional delay, Numer. Algor., 83 (2020), 987-1006.
- [16] Z. Moniri, B. P. Moghaddam, and M. Z. Roudbaraki, An Efficient and Robust Numerical Solver for Impulsive Control of Fractional Chaotic Systems, Journal of Function Spaces, Special Issue: Recent Advances of Fractional Calculus in Applied Science, (2023).
- [17] Z. S. Mostaghim, B. P. Moghaddam, and H. S. Haghgozar, Computational technique for simulating variable-order fractional Heston model with application in US stock market, Mathematical Sciences, 12, 277–283.
- [18] Y. Muroya, E. Ishiwata, and H. Brunner, On the attainable order of collocation methods for pantograph integro differential equations, J. Comput. Appl. Math., 152 (2003), 347–366.
- [19] J. R. Ockendon and A. B. Tayler, The dynamics of a current collection system for an electric locomotive, In Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 322 (1971), 447–468.
- [20] B. Parsa Moghaddam, A. Dabiri, Z. S. Mostaghim, and Z. Moniri, Numerical solution of fractional dynamical systems with impulsive effects, International Journal of Modern Physics C, 34(01) (2023).
- [21] I. Podlubny, Fractional differential equations, San Diego, Academic Press, 1999.
- [22] M. Shadia, Numerical solution of delay differential and neutral differential equations using Spline Methods, Ph.D Thesis, Assuit University, 1992.
- [23] M. Tavassoli Kajani, Numerical solution of fractional pantograph equations via Muntz-Legendre polynomials, Math. Sci., (2023).
- [24] M. Valizadeh, Y. Mahmoudi, and F. D. Saei, Application of natural transform method to fractional pantograph delay differential equations, Hindawi Journal of Mathematics, (2019).
- [25] E. Yusufoglu, An efficient algorithm for solving generalized pantograph equations with linear functional argument, App. Math. Comp., 217 (2010), 3591–3595.
|