- [1] T. Abdeljawad, On conformable fractional calculus, J Comput Appl Math., 279 (2015), 57-66.
- [2] B. P. Allahverdiev and H. Tuna, and Yal¸cınkaya, Spectral expansion for singular conformable Sturm-Liouville problem, Math. Commun., 25 (2020), 237-252.
- [3] D. R. Anderson and D. J. Ulness, Properties of the Katugampola fractional derivative with potential application in quantum mechanics, J Math Phys., 56 (2015), 063502.
- [4] A. L. Andrew and J. W. Paine, Correction of finite element estimates for Sturm-Liouville eigenvalues, Numer. Math., 50 (1986), 205-215.
- [5] A. L. Andrew and J. W. Paine, Correction of Numerov’s eigenvalue estimates, Numer. Math., 47 (1985), 289-300.
- [6] A. Atangana, D. Baleanu, and A. Alsaedi, New properties of conformable derivative, Open Math., 13 (2015), 889-898.
- [7] D. Avci, B. Iskender Eroglu, and N. Ozdemir, The Dirichlet problem of a conformable advection diffusion equation, Thermal Sci., 21 (2017), 9-18.
- [8] N. Benkhettou, S. Hassani, and D. F. M. Torres, A conformable fractional calculus on arbitrary time scales, J King Saud Univ Sci., 28 (2016), 93-98.
- [9] Y. Cenesiz, A. Kurt, and E. Nane, Stochastic solutions of conformable fractional Cauchy problems, Statist Probab Lett. 124 (2017), 126-131.
- [10] M. Ciesielski, M. Klimek, and T. Blaszczyk, The fractional Sturm-Liouville problem-Numerical approximation and application in fractional diffusion, Journal of computational and applied mathematics., 317 (2017), 573-588.
- [11] W. S. Chung, Fractional Newton mechanics with conformable fractional derivative, J Comput Appl Math. 290 (2015), 150-158.
- [12] M. Dehghan and A. B. Mingarelli, Fractional Sturm-Liouville eigenvalue problems, I. Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturales. Serie A. Matem´aticas, 114(46) (2020).
- [13] M. H. Derakhshan and A. Ansari, Numerical approximation to Prabhakar fractional Sturm-Liouville problem, Computational and Applied Mathematics, 38(71) (2019), 1-20.
- [14] A. Ebaid, B. Masaedeh, and E. El-Zahar, A new fractional model for the falling body problem, Chin Phys Lett. 34 (2017), 020201-1.
- [15] G. M. L. Gladwell, Inverse problem in vibration, Kluwer academic publishers, New York, 2004.
- [16] T. Gulshen, E. Yilmaz, and H. Kemaloglu, Conformable fractional Sturm-Liouville equation and some existence results on time scales, Turkish Journal of Mathematics, 42 (2018), 1348-1360.
- [17] H. Hochstadt, Asymptotic estimates for the Sturm-Liouville spectrum, Communications on pure and applied mathematics, XIV (1961), 740-764.
- [18] O. Iyiola, O. Tasbozan, and A. Kurt, On the analytical solutions of the system of conformable time-fractional Robertson equations with 1-D diffusion, Chaos Solitons Fractals., 94 (2017), 1-7.
- [19] Z. Kavooci, K. Ghanbari, and H. Mirzaei, New form of Laguerre Fractional Differential Equation and Applications, Turk J Math, 46 (2022), 2998-3010.
- [20] R. Khalil, M. Al Horani, and A. Yousef, new definition of fractional derivative, J Comput Appl Math. 264 (2014), 65-70.
- [21] A. Kirsch, An Introduction to the Mathematical Theory of Inverse Problems, Springer-Verlag, New York, 1996.
- [22] M. Klimek and O. P. Agrawal, Fractional Sturm-Liouville problem, Comput Math Appl., 66 (2013), 795-812.
- [23] M. Klimek, M. Ciesielski, and T. Blaszczyk, Exact and numerical solutions of the fractional Sturm-Liouville problem, Fractional calculus and applied analysis, 21(1) (2018), 45-71.
- [24] M. J. Lazo and D. F. M. Torres, Variational calculuswith conformable fractional derivatives, IEEE/CAA J Automat Sinica., 4 (2017), 340-352.
- [25] V. Ledoux, M. V. Daele, and G. V. Berghe, Effcient numerical solution of the 1D schr¨odinger problem using magnus integrators, IMA journal of numerical analysis, 30 (2010), 751-776.
- [26] V. Ledoux, M. V. Daele, and G. V. Berghe, Matslise: A matlab package for the numerical solution of SturmLiouville and schr¨odinger equations, ACM transactions on mathematical software, 31 (2005), 532-554.
- [27] A. B. Makhlouf, O. Naifar, and M. A. Hammami, FTS and FTB of conformable fractional order linear systems, Math Probab Eng., 5 (2018), 2572986.
- [28] H. Mirzaei, Computing the eigenvalues of fourth order Sturm-Liouville problems with Lie Group method, J Numer Anal Optim. 7(1) (2017), 1-12.
- [29] H. Mirzaei, K. Ghanbari, and M. Emami, Direct and inverse problems of string equation by Numerov’s method, Iranian Journal of Science, 47 (2023), 871-884.
- [30] H. Mortazaasl and A. Jodayree Akbarfam, Trace formula and inverse nodal problem for a conformable fractional Sturm-Liouville problem, Inverse Probl Sci Eng., 28(4) (2020), 524-555.
- [31] E. R. Nwaeze and D. F. M. Torres, Chain rules and inequalities for the BHT fractional calculus on arbitrary timescales, Arab J Math., 6 (2017), 13-20.
- [32] A. S. Ozkan and I. Adalar, Inverse problems for a conformable fractional Sturm-Liouville operator, (2019) arXiv: 1908.03457.
- [33] A. P´alfalvi, Efcient solution of a vibration equation involving fractional derivatives, Int J Nonlin Mech., 45 (2010), 169-175.
- [34] J. W. Paine, F. R. Hoog, and R. S. Anderssen, On the correction of finite difference eigenvalue approximations for Sturm-Liouville problems, Computing, 26 (1981), 123-139.
- [35] M. Shahriari and H. Mirzaei, Inverse Sturm-Liouville problem with conformable derivative and transmission conditions, Hacet. J. Math. Stat. 52 (2023), 753 -767.
- [36] M. Shahriari, B. Nemati, B. Mohammadalipour, and S. Saeidian, Pseudospectral method for solving the fractional one-dimensional Dirac operator using Chebyshev cardinal functions, Physica Scripta, 98 (2023), 055205.
- [37] G. Teschl, Mathematical Methods in Quantum Mechanics, With Applications to Schr¨odinger Operators, Graduate Studies in Mathematics, Amer. Math. Soc., Rhode Island, 2009.
- [38] D. Zhao and M. Luo, General conformable fractional derivative and its physical interpretation, Calcolo. 54 (2017), 903-917.
- [39] H. W. Zhou, S. Yang, and S. Q. Zhang, Conformable derivative approach to anomalous diffusion, Phys A., 491 (2018), 1001-1013.
- [40] M. Zayernouri and G. E. Karniadakis, Fractional Sturm-Liouville eigen-problems: Theory and numerical approximation, J Comput Phys., 252 (2013), 495-517.
|