تعداد نشریات | 44 |
تعداد شمارهها | 1,304 |
تعداد مقالات | 15,950 |
تعداد مشاهده مقاله | 52,286,470 |
تعداد دریافت فایل اصل مقاله | 15,044,416 |
بررسی عملکرد توربین هیدروسینتیک جهت تولید برق در کانالهای انتقال آب و ارزیابی فنی، اقتصادی و زیست محیطی | ||
مهندسی مکانیک دانشگاه تبریز | ||
دوره 53، شماره 3 - شماره پیاپی 104، آبان 1402، صفحه 51-60 اصل مقاله (1.19 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22034/jmeut.2023.50420.3064 | ||
نویسندگان | ||
امید رسولی؛ مسعود ابراهیمی* | ||
گروه مهندسی مکانیک، دانشگاه کردستان | ||
چکیده | ||
این تحقیق، به امکانسنجی استفاده از انرژی جریان آب در کانالهای انتقال آب سد گاوشان جهت تولید پراکنده برق با توربینهای هیدروسینتیک که با سرعتهای جریان آب کمتر از 2 متر بر ثانیه کار میکنند میپردازد. دلیل این مساله پتانسیل بالای تولید توان در این نوع جریانها میباشد. ابتدا مشخصات هیدرولیکی جریان استخراج و سپس پروفیل پرههای توربین بوسیله نظریه اشمیتز محاسبه شدهاند. سپس با مدلسازی در نرم افزار Solidworks و تحلیل در نرم افزار Ansys مقدار توان محاسبه شد. نتایج شبیهسازی توربین هیدروسینتیک برای سه کانال و چهار حالت از یک تونل انتقال آب طراحی گردید. نتایج نشان میدهد که بازده این توربینها حدود 90 درصد خواهد بود. در صورت استفاده از توربین با قطر 4 متر و سرعت آب 2 متر بر ثانیه میتوان علاوه بر تامین برق مورد نیاز یک روستای نزدیک تونل، می توان سالیانه 39366 کیلوواتساعت برق را به شبکه فروخت. همچنین دوره بازگشت سرمایه 4/3 سال و مقدار ارزش حال خالص پروژه مثبت می باشد و سالانه 109 تن کاهش تولید کربندیاکسید رخ خواهد داد. | ||
کلیدواژهها | ||
کانال انتقال آب؛ توربین های هیدروسینتیک؛ اقتصادی؛ زیست محیطی؛ سد گاوشان | ||
مراجع | ||
[1] https://www.isna.ir/news/1400091007998 [3] Jo CH, Par KK and Im SW. Interaction of multi arrayed current power generations. International offshore and polar engineering conference, Lisbon, pp. 302e306, 2007. [4] Jo CH, Lee CH, Rho YH and Yim JY. Floating tidal current power application in cooling water channel. The Korean Association of Ocean Science and Technology Societies conference, Jeju, pp. 2184e2187, 2008. [5] Das M., Singh M.A.K., Biswas A., Techno-economic optimization of an off-grid hybrid renewable energy system using metaheuristic optimization approaches e case of a radio transmitter station in India, Energy Convers. Manag. 185 339e352, 2019. [6] Rajanna S., Saini R.P., Development of optimal integrated renewable energy model with battery storage for a remote Indian area, Energy 111- 803e817, 2016. [7] Chauhan A., Saini R.P., Techno-economic feasibility study on integrated renewable energy system for an isolated community of India, Renew. Sustain. Energy Rev. 59 (2016) 388e405, [8] Morandi, B., Felice, F.D., Costanzo, M.. Experimental investigation of the near wake of a horizontal axis tidal current turbine. Int. J. Mar. Energ 14, 229e247, 2016. [9] Bahaj, A.S., Molland, A.F., Chaplin, J.R. Power and thrust measurements of marine current turbines under various hydrodynamic flow conditions in a cavitation tunnel and a towing tank. Renew. Energ 32 (3), 407e426, 2007. [10] Atcheson, M., Mackinnon, P., Elsaesser, B. A. large scale model experimental study of a tidal turbine in uniform steady flow. Ocean. Eng. 110, 51e61, 2015. [11] Lowson, M.J. Li, Y., Sale, D.C. Development and Verification of a Computational Fluid Dynamics Model of a Horizontal-Axis Tidal Current Turbine. Office of Scientific & Technical Information Technical Reports, 2011. [12] Schleicher, W.C., Riglin, J.D., Oztekin, A. Numerical characterization of a preliminary portable micro-hydrokinetic turbine rotor design. Renewable. Energy 76, 234e241, 2014. [13] Lee N.J., Kim I.C., Chang, G.K. Performance study on a counter-rotating tidal current turbine by CFD and model experimentation. J. Mech. Sci. Technol. 30 (2), 519e524, 2016. [14] Liu J., Lin H., Purimitla, S.R. Wake field studies of tidal current turbines with different numerical methods. Ocean. Eng. 117, 383e397, 2016. [15] Tatum S., Allmark M., Frost, C. CFD modelling of a tidal stream turbine subjected to profiled flow and surface gravity waves. Int. J. Mar. Energ 15, 156e174, 2016. [16] Khan MJ, Iqbal MT, Quaicoe JE. River current energy conversion systems: progress, prospects and challenges. Renewable & Sustainable Energy Review. Elsevier; 2007. [17] Kumar B, Hiremath R, Balachandra P, Ravindranath N, Raghunandan B. Decentralised renewable energy: scope, relevance and applications in the Indian context. Energy Sustain Dev:4–10, 2009. [18] Thresher R. Commercialization path and challenges for marine hydrokinetic renewable energy. IEEE PES (Power and Energy Society) General Meeting: The Electrification of Transportation and the Grid of the Future, 24–28 July 2011, Detroit, Michigan. Piscataway, NJ: Institute of Electrical and Electronics Engineers (IEEE). [8 pp.; NREL Report No. CP-5000-49959, 2011. [19] Kumar A., Sharma M. P., and Kumar A., Green House Gas emissions from Hydropower Reservoirs: Policy and Challenges, Int. J. Renew. Energy Res. IJRER, vol. 6, no. 2, pp. 472–476, Jun. 2016. [20] Dhakal R., Nepal A., Acharya A., Kumal, B., Aryal, T., Williamson, S.J., Khanal, K. and Devkota, L., “Technical and economic prospects for the site implementation of a gravitational water vortex power plant in Nepal,” in 2016 IEEE International Conference on Renewable Energy Research and Applications (ICRERA), pp. 1001–1006. (Conference paper), 2016 [21] Muluken Temesgen Tigabu, Dawit Diriba Guta, Bimrew Tamrat Admasu Faculty of Mechanical and Industrial Engineering, Bahirdar Energy Centre, BahirDar Institute of Technology, BahirDar University, Bahirdar P.O.BOX 26, Ethiopia Centre for Environment and Development Studies, College of Development Studies, Addis Ababa University, Addis Ababa P.O.BOX 1176, Ethiopia Corresponding Author; Muluken Temesgen Tigabu, P.O.BOX 26, Bahirdar, Ethiopia, received: 06.06.2019 Accepted:13.08, 2019. [22] Shahsavarifard M., Bibeau L. Department of Mechanical Engineering, University of Manitoba, Winnipeg, Canada, R3T 5V6 , https://doi.org/10.1016/j.oceaneng.2020.106916 [23] Experimental evaluation of coaxial horizontal axis hydrokinetic composite turbine system A. Abutunis , G. Taylor , M. Fal , K. Chandrashekhara , https://doi.org/10.1016/j.renene.2020.05.010 ]24[ شاهوردی، ک. (1400). بررسی اثر عمق پایاب بر روی عملکرد توربین پیچ ارشمیدس در تولید انرژی از جریان آب در کانالها. مجله مدیریت آب و آبیاری دانشگاه تهران، 11(1): 677-659. ]25[ شاهوردی، ک. (1399). مدلسازی توربین پیچ ارشمیدس با استفاده از نرمافزار FLOW3D و بررسی اثر تعداد پرهها بر روی عملکرد آن. نشریه سد و نیروگاه برقآبی ایران، 7(26): 79-70. [27] SMART HYDRO POWER, SMART MONOFLOAT TURBINE. https://www.smart-hydro.de/wp-content/uploads/2015/12/Datasheet_SMART_Monofloat.pdf [28] Economics of Hydro-Kinetic Turbine for off-grid Application: A Case Study of Gumara River, Upper Blue Nile, Amhara, Ethiopia, Muluken Temesgen Tigabu, received: 06.06.2019 Accepted:13.08.2019 [29] https://www.globalpetrolprices.com/electricity_prices/ ]30[ سلمانی، ف؛ امیری راد، ا؛ سلیمی، م. 1393 امکانسنجی احداث دو واحد همزمان تولید حرارت و برق با بیوگاز در تصفیه خانه فاضالب شهری مهندسی مکانیک دانشگاه تبریز،دوره 47 ،شماره 3 ،صص 325-331 [31] Hope, C. and Newbery, D. Calculating the social cost of carbon. University of Cambridge, 2007. | ||
آمار تعداد مشاهده مقاله: 92 تعداد دریافت فایل اصل مقاله: 71 |