تعداد نشریات | 44 |
تعداد شمارهها | 1,303 |
تعداد مقالات | 16,020 |
تعداد مشاهده مقاله | 52,489,302 |
تعداد دریافت فایل اصل مقاله | 15,216,901 |
حذف تزویج متقابل دو آرایه آنتن پچ همفرکانس با استفاده از پوشش فراسطحی برای کاربردهای چرخش پرتو | ||
مجله مهندسی برق دانشگاه تبریز | ||
مقاله 3، دوره 53، شماره 4 - شماره پیاپی 106، دی 1402، صفحه 269-280 اصل مقاله (1.7 M) | ||
نوع مقاله: علمی-پژوهشی | ||
شناسه دیجیتال (DOI): 10.22034/tjee.2023.56274.4619 | ||
نویسندگان | ||
رضا معصومی1؛ رباب کاظمی* 2 | ||
1دانشجوی دکتری، دانشکده مهندسی برق و کامپیوتر، دانشگاه تبریز، تبریز، ایران | ||
2گروه مخابرات، دانشکده برق و کامپیوتر، دانشگاه تبریز، تبریز، ایران | ||
چکیده | ||
در این مقاله، روش پوشش صفحهای برای حذف تزویج متقابل دو آرایه آنتن پچ فشرده همفرکانس و با قطبشهای متعامد به کار رفتهاست. ابعاد پچها با قرار دادن دو شکاف در لبههای رزونانسی نسبت به پچ معمولی 33% کاهش یافته تا فاصله بین المانها کمتر شده و امکان چرخش پرتو فراهم شود. برای کاهش تزویج متقابل قوی بین المانها، یک پوشش فراسطح نازک روی سطوح بالا و پایین پچها قرار میگیرند. پوشش فراسطحی در فرکانس کار موردنظر راکتانس خازنی از خود نشان داده و راکتانس سلفی ناشی از جریانهای القایی از پچهای مجاور را حذف میکند، در نتیجه المانهای دو آرایه نسبت به هم نامرئی میشوند. عملکرد ساختار پوشش پیشنهادی با شبیهسازی تمامموج از نظر مشخصات تشعشعی آرایهها ارزیابی شده است. بازده آرایهها بعد از افزودن پوشش نسبت به حالت بدون پوشش 35% افزایش یافته و ایزولاسیون بین عناصر بیش از dB 24 در فرکانس کار بهبود یافتهاست. الگوهای تشعشعی نیز در حالت پوششدار 98.5% نسبت به آرایههای مجزا از هم مشابهت نشان میدهد. مقادیر بهره آنتنها در حالت پوششدار، در آرایه I و II به ترتیب تنها dB 0.1 و dB 0.2 کاهش و سطح لوبهای فرعی نیز به ترتیبdB 0.5و dB 0.2 نسبت به حالت مجزا از هم افزایش نشان میدهد. نتایج حاصل، موفقیت طرح پوشش پیشنهادی در بازیابی ویژگیهای تشعشعی آرایههای درهم تنیده مشابه آرایههای مجزا از هم را تایید میکنند. | ||
کلیدواژهها | ||
جداسازی آنتنها؛ پوشش صفحهای ناهمسانگرد؛ پوششهای فراسطحی بیضوی؛ چرخش پرتو؛ جداسازی قطبش | ||
مراجع | ||
[1] Qian, X. Chen, A. A. Kishk, "Decoupling of microstrip antennas with defected ground structure using the common/differential mode theory," IEEE Antennas and Wireless Propagation Letters, vol. 20, no. 5, pp. 828-832, 2021. [2] V. Babu, B. Anuradha, "Design of UWB MIMO antenna to reduce the mutual coupling using defected ground structure," Wireless Personal Communications, vol. 118, no. 4, pp. 3469-3484, 2021. [3] Li, L. Jiang, K. L. Yeung, "Novel and efficient parasitic decoupling network for closely coupled antennas," IEEE Transactions on Antennas and Propagation, vol. 67, no. 6, pp. 3574-3585, 2019. [4] Li, S. Cheung, "A novel calculation-based parasitic decoupling technique for increasing isolation in multiple-element MIMO antenna arrays," IEEE Transactions on Vehicular Technology, vol. 70, no. 1, pp. 446-458, 2020. [5] Li, A. P. Feresidis, M. Mavridou, P. S. Hall, "Miniaturized double-layer EBG structures for broadband mutual coupling reduction between UWB monopoles," IEEE Transactions on Antennas and Propagation, vol. 63, no. 3, pp. 1168-1171, 2015. [6] Alibakhshikenari, M. Khalily, B. S. Virdee, C. H. See, R. A. Abd-Alhameed, E. Limiti, "Mutual-coupling isolation using embedded metamaterial EM bandgap decoupling slab for densely packed array antennas," IEEE Access, vol. 7, pp. 51827-51840, 2019. [7] Singh, F. L. Lohar, "Metamaterial-Based Miniaturized DGS Antenna for wireless Applications," in IOP Conference Series: Materials Science and Engineering, 2022, vol. 1225, no. 1: IOP Publishing, p. 012035. [8] Omidvar, P. Rezaei, E. Atashpanjeh "Mutual coupling reduction with Peyton Turtle pattern nearfield surface for MIMO patch antenna," Frequenz, 2023. [9] Habibi Daronkola, et al., "Mutual coupling reduction using plane spiral orbital angular momentum electromagnetic wave," Journal of Electromagnetic Waves and Applications, vol. 36, no. 3, pp. 346-355, 2022. [10] Schurig et al., "Metamaterial electromagnetic cloak at microwave frequencies," Science, vol. 314, no. 5801, pp. 977-980, 2006. [11] Vehmas, P. Alitalo, S. Tretyakov, "Experimental demonstration of antenna blockage reduction with a transmission-line cloak," IET Microwaves, Antennas & Propagation, vol. 6, no. 7, pp. 830-834, 2012. [12] Alitalo, A. E. Culhaoglu, A. V. Osipov, S. Thurner, E. Kemptner, S. A. Tretyakov, "Experimental characterization of a broadband transmission-line cloak in free space," IEEE Transactions on Antennas and Propagation, vol. 60, no. 10, pp. 4963-4968, 2012. [13] Danaeifar, M. Kamyab, A. Jafargholi, "Broadband cloaking with transmission‐line networks and metamaterial," International Journal of RF and Microwave Computer‐Aided Engineering, vol. 22, no. 6, pp. 663-668, 2012. [14] Rainwater, A. Kerkhoff, K. Melin, J. Soric, G. Moreno, A. Alù, "Experimental verification of three-dimensional plasmonic cloaking in free-space," New Journal of Physics, vol. 14, no. 1, p. 013054, 2012. [15] Argyropoulos, P.-Y. Chen, F. Monticone, G. D’Aguanno, A. Alu, "Nonlinear plasmonic cloaks to realize giant all-optical scattering switching," Physical Review Letters, vol. 108, no. 26, p. 263905, 2012. [16] S. Filonov, A. P. Slobozhanyuk, P. A. Belov, Y. S. Kivshar, "Double‐shell metamaterial coatings for plasmonic cloaking," Physica Status Solidi (RRL)–Rapid Research Letters, vol. 6, no. 1, pp. 46-48, 2012. [17] Alù, "Mantle cloak: Invisibility induced by a surface," Physical Review B, vol. 80, no. 24, p. 245115, 2009. [18] Su, Y. Zhao, S. Jia, W. Shi, H. Wang, "An ultra-wideband and polarization-independent metasurface for RCS reduction," Scientific Reports, vol. 6, no. 1, p. 20387, 2016. [19] Serna, L. J. Molina, J. Rivero, L. Landesa, J. M. Taboada, "Multilayer homogeneous dielectric filler for electromagnetic invisibility," Scientific Reports, vol. 8, no. 1, p. 13923, 2018. [20] Younesiraad, M. Bemani, S. Nikmehr, "Scattering suppression and cloak for electrically large objects using cylindrical metasurface based on monolayer and multilayer mantle cloak approach," IET Microwaves, Antennas & Propagation, vol. 13, no. 3, pp. 278-285, 2019. [21] Monti, J. C. Soric, A. Alù, A. Toscano, F. Bilotti, "Anisotropic mantle cloaks for TM and TE scattering reduction," IEEE Transactions on Antennas and Propagation, vol. 63, no. 4, pp. 1775-1788, 2015. [22] C. Soric, A. Monti, A. Toscano, F. Bilotti, A. Alù, "Dual-polarized reduction of dipole antenna blockage using mantle cloaks," IEEE Transactions on Antennas and Propagation, vol. 63, no. 11, pp. 4827-4834, 2015. [23] Monti et al., "Mantle cloaking for co-site radio-frequency antennas," Applied Physics Letters, vol. 108, no. 11, p. 113502, 2016. [24] Moreno et al., "Wideband elliptical metasurface cloaks in printed antenna technology," IEEE Transactions on Antennas and Propagation, vol. 66, no. 7, pp. 3512-3525, 2018. [25] Monti, J. Soric, A. Alù, A. Toscano, F. Bilotti, "Design of cloaked Yagi-Uda antennas," EPJ Applied Metamaterials, vol. 3, p. 10, 2016. [26] Vellucci et al., "Non-linear mantle cloaks for self-configurable power-dependent phased arrays," in 2020 XXXIIIrd General Assembly and Scientific Symposium of the International Union of Radio Science, 2020: IEEE, pp. 1-3. [27] Vellucci et al., "Overcoming mantle cloaking limits in antenna applications through non-linear metasurfaces," in 2020 Fourteenth International Congress on Artificial Materials for Novel Wave Phenomena (Metamaterials), 2020: IEEE, pp. 355-357. [28] Vellucci et al., "On the use of nonlinear metasurfaces for circumventing fundamental limits of mantle cloaking for antennas," IEEE Transactions on Antennas and Propagation, vol. 69, no. 8, pp. 5048-5053, 2021. [29] Vellucci, A. Monti, M. Barbuto, A. Toscano, F. Bilotti, "Progress and perspective on advanced cloaking metasurfaces: from invisibility to intelligent antennas," EPJ Applied Metamaterials, vol. 8, p. 7, 2021. [30] Y. Chen, A. Alu, "Mantle cloaking using thin patterned metasurfaces," Physical Review B, vol. 84, no. 20, p. 205110, 2011. [31] M. Bernety, A. B. Yakovlev, "Decoupling antennas in printed technology using elliptical metasurface cloaks," Journal of Applied Physics, vol. 119, no. 1, p. 014904, 2016. [32] M. Bernety, A. B. Yakovlev, "Cloaking of single and multiple elliptical cylinders and strips with confocal elliptical nanostructured graphene metasurface," Journal of Physics: Condensed Matter, vol. 27, no. 18, p. 185304, 2015. [33] Moosaei, M. H. Neshati, "Design investigation of mantle-cloak for a PEC cylindrical object under oblique incidence of TM and TE waves," AEU-International Journal of Electronics and Communications, vol. 137, pp. 153801, 2021. [34] R. Padooru, A. B. Yakovlev, P.-Y. Chen, A. Alu, "Analytical modeling of conformal mantle cloaks for cylindrical objects using sub-wavelength printed and slotted arrays," Journal of Applied Physics, vol. 112, no. 3, p. 034907, 2012. [35] M. Bernety, A. B. Yakovlev, "Reduction of mutual coupling between neighboring strip dipole antennas using confocal elliptical metasurface cloaks," IEEE Transactions on Antennas and Propagation, vol. 63, no. 4, pp. 1554-1563, 2015. [36] Pawar, H. M. Bernety, H. G. Skinner, S.-Y. Suh, A. Alù, A. B. Yakovlev, "Mantle cloaking for decoupling of interleaved phased antenna arrays in 5G applications," in AIP Conference Proceedings, 2020, vol. 2300, no. 1: AIP Publishing LLC, p. 020095. [37] Niu, H. Zhang, Q. Chen, T. Zhong, "Isolation enhancement in closely coupled dual-band MIMO patch antennas," IEEE Antennas and Wireless Propagation Letters, vol. 18, no. 8, pp. 1686-1690, 2019. [38] Liu, J. Guo, L. Zhao, G.-L. Huang, Y. Li, Y. Yin, "Ceramic superstrate-based decoupling method for two closely packed antennas with cross-polarization suppression," IEEE Transactions on Antennas and Propagation, vol. 69, no. 3, pp. 1751-1756, 2020. [39] L. Chung, A. Cui, M. Ma, B. Feng, Y. Li, "Central-Symmetry Decoupling Technique for Circularly-Polarized MIMO System of Tightly Packed Chinese-character Shaped Patch Antennas," The Applied Computational Electromagnetics Society Journal (ACES), pp. 1125-1131, 2021. [40] -F. Cheng, K. K. M. Cheng, "Decoupling of 2× 2 MIMO antenna by using mixed radiation modes and novel patch element design," IEEE Transactions on Antennas and Propagation, vol. 69, no. 12, pp. 8204-8213, 2021. [41] Mei, Y. M. Zhang, S. Zhang, "Decoupling of a wideband dual-polarized large-scale antenna array with dielectric stubs," IEEE Transactions on Vehicular Technology, vol. 70, no. 8, pp. 7363-7374, 2021. [42] Qi, D. Yang, H. Zhai, Y. Zeng, Z. Wang, "Patch Antenna Array Decoupling Based on Polarization Conversion Frequency Selective Surface," in 2020 International Conference on Microwave and Millimeter Wave Technology (ICMMT), 2020: IEEE, pp. 1-3. [43] -L. Wu, C. Wei, X. Mei, Z.-Y. Zhang, "Array-antenna decoupling surface," IEEE Transactions on Antennas and Propagation, vol. 65, no. 12, pp. 6728-6738, 2017. [44] Masoumi, R. Kazemi, A. E. Fathy, "Design and implementation of elliptical mantle cloaks for polarization decoupling of two tightly spaced interleaved co-frequency patch array antennas," Scientific Reports, vol. 13, no. 1, pp. 1-16, 2023. | ||
آمار تعداد مشاهده مقاله: 359 تعداد دریافت فایل اصل مقاله: 297 |