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Abstract 

Efficient distribution of service requests between fog and cloud nodes considering user mobility and fog nodes’ overload 

is an important issue of fog computing. This paper proposes a heuristic method for task placement considering the mobility 

of users, aiming to serve a higher number of requested services and minimize their response time. This method introduces 

a formula to overload prediction based on the entry-exit ratio of users and the estimated time required to perform current 

requests that are waiting in the queue of a fog node. Then, it provides a solution to avoid the predicted overloading of fog 

nodes by sending all delay-tolerant requests in the overloaded fog node’s queue to the cloud to reduce the time required 

for servicing delay-sensitive requests and to increase their acceptance rate. In addition, to prevent requests from being 

rejected when the mobile user leaves the coverage area of the current fog node, the requests in the current fog node’s 

queue will be transferred to the destination fog node. Simulation results indicate that the proposed method is effective in 

avoiding the overloading of the fog nodes and outperforms the existing methods in terms of response time and acceptance 

rate. 
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1. Introduction 

We have witnessed much research and significant 

technological advances since Kevin Ashton used the term 

Internet of Things (IoT) in 1999 [1]. One of the main 

challenges of IoT is to provide an appropriate way to 

store and process the huge amount of data generated by 

IoT devices. Cloud computing, thanks to providing an 

almost infinite amount of storage and processing space, 

can be very useful in addressing such challenges [2]. 

However, cloud computing is unable to satisfy the 

requirements for time-critical applications such as smart 

healthcare due to its unreliable latency and lack of 

mobility support [3]. 

Fog computing, which provides computing resources and 

services at the edges of the network, has been proposed 

to address the mentioned problems. Fog computing is a 

distributed computing paradigm that acts as an 

intermediate layer between the cloud and IoT devices. 

Data generation and processing can be handled through 

intelligent networking devices called fog nodes at the fog 

layer which leads to low-latency access and faster 

response to application requests when compared to the 

cloud. Furthermore, fog computing supports mobile 

applications with different latency requirements. 

Fog computing has many research challenges [4]. One of 

these is task placement (i.e., selection of the appropriate 

computing node for executing the incoming task) while 

considering different QoS requirements of different 

applications. Among these requirements, the latency of 

deadline-constrained applications is critical. It is 

expected that this kind of applications can be executed 

within their respective deadlines. This raises a new 

challenge for task placement and scheduling: deciding 

when and where (fog/cloud) to process the application 

requests to satisfy their requirements.  

Task placement and scheduling in cloud computing are 

well-studied [5, 6]. However, the rapid increase in the 

number of IoT devices and application requests, limited 

resources of the fog nodes, and the mobility of users 

make task placement in fog computing more challenging. 

With the growing use of mobile devices, the fog 

computing framework is required to be adapted to the 

specific needs of mobile users. Mobile users frequently 

move from the area covered by one fog node to another 

and their access points to communicate with the fog 

nodes change. This may affect the latency QoS of IoT 

services. Due to the limited service coverage of fog nodes, 

the mobility of users when leaving the coverage area of 

the serving fog node will cause service loss or excess 

delay (because of an increase in the hop counts). To 

maintain the service continuity and to ensure timely 

service delivery, the requests are preferred to relinquish 

to a fog node that is closer to the access point to which 

the user device is connected. However, when this fog 

node does not have sufficient available resources to 

support new service requests, these requests should wait 

in the queue for execution, which increases the time delay 

and affects the execution deadline constraints of latency- 

sensitive applications. On the other hand, the movement 

of users towards a single resource-constrained fog node 
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and consequently an increase in the number of arriving 

requests may result in overload on that node. The 

performance of the overloaded fog node decreases 

significantly and it will not be able to meet the demands 

of latency-sensitive applications [7]. 

Hence, mobility is a significant issue of task placement 

in fog computing. Previous works to task placement in 

fog computing have rarely considered user mobility 

issues. This paper proposes a new method for task 

placement adapted for mobile users, aiming at 

maximizing the number of completed requests with 

respect to their deadline constraints. Simulation results 

show that considering user mobility can significantly 

reduce the probability of overloading on fog nodes and 

improve the acceptance rate of service requests while 

taking into account their requirements in terms of 

response time. In summary, the main contributions of this 

paper are as follows: 

 Proposing a new method for distributing the incoming 

user requests to the computing devices in the 

network (fog or cloud nodes) while meeting their 

deadline and minimizing their response time.  

 Introducing a method for predicting overload in the 

fog node, and accordingly deciding to process the 

delay-tolerant requests in the fog or send them to 

the cloud in order to increase the acceptance rate, 

especially for high-priority requests (delay-

sensitive ones) 

 Considering the mobility of users and providing a 

solution to prevent requests from being rejected 

when the mobile user leaves the coverage area of 

the current fog node, by moving the user requests 

from the current fog node’s queue to the queue of 

the neighboring fog node. 

The organization of the paper is as follows: Section 2 

reviews the research for task placement in fog computing. 

Section 3 describes the system model. Section 4 details 

the proposed method for task placement in fog computing. 

Section 5 presents the results of experiments performed 

to evaluate the proposed method. Finally, Section 6 

draws some conclusions. 

 

2. Literature review  

In recent years, the issue of task placement in fog 

computing has been of great interest to researchers. In [8], 

a comprehensive overview of the existing approaches for 

task placement was provided. Generally, existing works 

for task placement can be divided into four exact, 

heuristic, metaheuristic, and hybrid methods. In this 

section, we will introduce some of the related works done 

in each class. 

Many works, such as [9], formulated the task placement 

problem with Integer Linear Programming (ILP). ILP 

expresses a problem with mathematical constraints and 

an objective function that can be solved by generic ILP-

solvers, which guarantee to return the optimal result. 

However, exact algorithms are hardly scalable and suffer 

from high execution time that is exponential with respect 

to the problem size (number of services and fog nodes). 

Tran et al. [10] introduced a systematic fog computing 

framework consisting of multiple intelligent tiers for the 

IoT, and provided a context-aware task placement 

approach to optimize service decentralization on fog 

computing. This approach that leverages context-aware 

information such as location, compute and storage 

capacities of fog devices, and expected deadline of an 

application, aims at utilizing fog devices available at the 

network edges, improving the performance of IoT and 

minimizing the latency, energy consumption, and cost. 

Some of the existing works used heuristics for task 

placement. Xia et al. [11] proposed two backtrack search 

algorithms (Exhaustive and Naïve) and two heuristics to 

efficiently make task placement decisions. The 

Exhaustive search tried to visit all existing solutions for 

task placement and returned the best solution that 

minimizes the average response time. The Naive search 

returned the first found solution. The first heuristic 

(Anchor-based fog nodes ordering) aimed at minimizing 

the response time returned by the Naïve search and the 

second one (Dynamic components ordering) accelerated 

the search process. 

Khosroabadi et al. [12] presented a heuristic algorithm to 

solve the service placement problem in fog computing for 

the smart home applications. The main idea of this 

algorithm was to place latency-sensitive applications as 

much as possible closer to the IoT devices. To this end, 

they introduced a hierarchical fog-cloud architecture for 

optimization of service placement problem, in which the 

fog nodes were clustered and the horizontal connections 

between fog nodes were considered. 

Natesha and Guddeti [13] introduced two metaheuristics 

for service placement in fog computing to minimize the 

service cost and ensure the QoS of Industrial IoT (IIoT) 

applications: MGAPSO, which was developed by 

combining the Genetic Algorithm (GA) and Particle 

Swarm Optimization (PSO), and EGAPSO that was 

developed by combining the Elitism-based GA and the 

PSO. 

Goudarzi et al. [14] proposed an optimal version of the 

Memetic Algorithm for task placement of multiple IoT 

devices on appropriate fog/cloud servers to minimize 

their execution time and energy consumption. The 

proposed method had three phases: pre-scheduling, batch 

application placement, and failure recovery. In the pre-

scheduling phase, the authors proposed an algorithm to 

organize the concurrent IoT devices’ workflows. In the 

second phase, they proposed a batch application 

placement based on the Memetic Algorithm to minimize 

the weighted cost of each IoT device. In the third phase, 

they embedded a fast failure recovery method in their 

method to assign failed tasks to appropriate servers. 

The metaheuristic algorithms may fall into the local 

optimal trap, and they do not guarantee the optimal 

solutions. In addition, the decision time of these 

algorithms makes them inefficient for latency-sensitive 

and large-sized problems. 

Some previous works have focused on hybrid methods. 

Kopras et al. [15] proposed a method for task placement 

in fog computing aiming at minimizing network energy 

consumption while meeting delay constraints specific for 

each offloaded task. They formulated a universal non-

convex Mixed-Integer Nonlinear Programming (MINLP) 

problem to minimize task transmission- and processing-

related energy and provided an optimal solution by using 

the primal and dual decomposition techniques and the 
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Hungarian algorithm, while the values of the allocation 

variables were obtained in a heuristic manner. 

Sarkar et al. [16] proposed a deadline-aware dynamic 

task placement (DDTP) strategy that selected the 

appropriate computing node for each incoming task 

while meeting the deadline. At first, the DDTP strategy 

classified the incoming tasks based on some task 

utilization factors and assigned them to a priority queue 

based on their deadlines. Then, a new policy was 

proposed to find an appropriate computing device for 

meeting the tasks’ deadlines. This policy adopted the 

concept of augmenting path to ensure that the maximum 

number of tasks was assigned to the corresponding 

computing device. Finally, a heuristic dispatch-constraint 

offloading strategy was employed to migrate the failed 

tasks to another suitable fog node in the same region. 

In [17], the joint container placement and task-

provisioning problem for a dynamic fog computing 

environment was formulated as an optimization problem 

using ILP. Initially, this problem was solved using 

CPLEX in an optimal way, and then, metaheuristic PSO-

based and Greedy heuristic algorithms were designed to 

solve it. The optimization objective included the 

maximization of the number of successful users’ requests 

within a predefined time. 

According to our studies, previous works for task 

placement in fog computing mostly ignore the mobility 

of users. In most of the methods introduced in this section, 

addressing the issue of mobility in task placement is 

considered as future work [12,14,16]. 

In [17], the effect of fog node mobility on task placement 

was studied. To this end, the authors adopted three 

scenarios with different mobility patterns: 1) static (5 

RSUs), 2) slow mobility (80 cellphones), and 3) fast 

mobility (40 vehicles). Sets of real-world vehicle and 

pedestrian traces in Manhattan and Rome were used to 

simulate the mobility of fog nodes.  

In [18], a mobility-aware task offloading and migration 

model was proposed. In this model, the mobility of users 

was characterized by the sojourn time in each coverage 

of fog nodes, which followed the exponential distribution, 

and task offloading was formulated as a MINLP problem. 

This problem was divided into two sub-problems: 1) A 

Gini coefficient-based fog node selection algorithm was 

proposed to optimize the offloading decisions, and 2) A 

distributed resource optimization algorithm based on the 

Genetic algorithm was provided to solve the resource 

allocation problem. These algorithms could manage user 

mobility in fog computing by reducing the probability of 

migration. 

The above-mentioned references [17, 18], did not 

consider the overload of fog nodes due to user mobility, 

and also the deadline constraints of delay-sensitive 

applications (users’ requests have the same priority). 

The closest work to ours is by Peixoto et al. [19]. They 

offered a simple scenario of user mobility, in which 

mobile devices move towards a particular cloudlet one by 

one. They simulated overloading resulting from user 

mobility in a simplified way by increasing the number of 

requests in a single fog node. They also proposed the 

Delay-priority algorithm in which the delay-tolerant 

requests were forwarded to the cloud to satisfy the 

requirements of delay-sensitive requests.  

Table I presents the overview of the existing works to 

task placement in fog computing. As mentioned before, 

mobility support is an inseparable feature of the fog 

computing architecture. Thus, more research is needed in 

this area. 
 

3. System model 

We used the three-layer architecture of cloud, fog and, 

IoT devices for fog computing [20]. According to Fig. 1, 

the lowest layer consists of all the IoT devices that 

interact with the end users and are responsible for sensing 

the environment and sending the data/requests to the fog 

layer. This layer communicates with the fog computing 

layer through the access points, gateways, etc. 

The fog layer is the middle layer that contains several 

heterogeneous and distributed low-power intelligent 

devices, referred to as fog nodes, which provide 

computing, storage, and networking capabilities. Fog 

nodes are clustered into domains. Each fog node has a 

limited area of coverage where the desired fog services 

are provided. All the fog nodes can communicate with 

neighboring fog nodes of the same domain and with the 

cloud. Furthermore, fog nodes can handle the mobility 

issues of the mobile nodes. Each Fog node can control 

and coordinate the mobile users located within its 

coverage area. 

The cloud layer consists of many high-performance 

servers and data centers that are capable of storing and 

processing the huge amount of data. 

 

Table I. Summary of the related works for task placement in fog computing. 

Reference method 

Performance metric 

User 

mobility 

Deadline-

aware 

Overload 

due to the 

mobility 
Response time 

Acceptance/ 

rejection rate 

Energy 

consumption 

Network 

usage 

/cost 

[9] Exact   - - -  -   - 

[10] Exact   -     -   - 

[11] Heuristic   - - -  - - - 

[12] Heuristic   -     -   - 

[13] Metaheuristic   -     -   - 

[14] Metaheuristic   -     - -  - 

[15] Hybrid -     -  - -  - 

[16] Hybrid   - - -  -   - 

[17] Hybrid     -     -  - 

[18] Hybrid - -       -  - 

[19] Heuristic   - -     -  - 

Ours Heuristic     - -        
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Fig. 1.  Three-layer architecture of cloud, fog and IoT devices. 

 

The standardized approach for performing an application 

request in the IoT systems is as follows: An IoT device 

sends the service request to the fog layer for processing. 

In the fog layer, the fog node which has received the 

request from the IoT device can serve it or may cooperate 

with other fog nodes in the same domain to execute the 

request. If not enough resources are available at the fog 

layer, the fog node can forward the request to the cloud 

layer. 

IoT devices perform several types of applications with 

different requirements. To show how the quality of task 

placement can be affected by considering different 

application classes with different latency requirements, 

we classify applications based on their ability to tolerate 

delay into two classes: delay-sensitive and delay-tolerant. 

The delay-sensitive requests are preferred to be 

processed in a nearby fog node due to the low latency 

constraints, while the delay-tolerant ones can be executed 

in either the fog or the cloud. In fact, the priorities of the 

requests are determined based on their deadlines. 

The three-layer architecture has many benefits. However, 

task placement and scheduling in this architecture face 

the following challenges: 

 Which node (fog/cloud) and when should process 

the service requests, according to the type of 

application (delay-sensitive/delay-tolerant)? How 

can this decision be made dynamically and quickly? 

 How to predict and avoid fog node overloading to 

maximize the number of satisfied requests and 

minimize their response time? 

 How can task placement be accomplished 

concerning the mobility of users? 

In this paper, we propose an effective method for task 

placement in fog computing considering the above-

mentioned issues. Our system model is composed of one 

fog domain,  hosting  N  fog  nodes,  that  is  defined  

as: 𝐹𝐷 = {FN1, FN2, …,FNN}. Each FNi is characterized 

by the total processing capacity Pi and its coverage area 

Ri . We use the notation Ci to denote the square 

circumscribed by the coverage area Ri (the diagonal of 

the square is equal to the diameter of the circle). Each 

FNi  has a list of neighboring fog nodes 𝑁𝐿𝑖 =
{nl\nl∈FD and nl adjacent to FNi} that can forward the 

user requests to them and a waiting queue (Qi) for storing 

the requests arriving from the users or neighboring fog 

nodes. 

We consider a set of mobile users  𝑈 = {U1,U2,…,UM} 
where each user 𝑈𝑗=(𝑉𝑒𝑙𝑗 ,𝐷𝑖𝑟𝑗 ,𝐿𝑜𝑐𝑗) is characterized by 

its velocity 𝑉𝑒𝑙𝑗 , movement direction 𝐷𝑖𝑟𝑗 , and 

geographical location 𝐿𝑜𝑐𝑗 . The geographic location of 

the mobile node is determined using latitude and 

longitude. The velocity, movement direction, and 

location of mobile users are updated periodically over the 

specified time slots with an equal length of Δ1, denoted 

by 𝑆 = {S1,S2,…,Sz}. Each user Uj can generate delay-

sensitive and/or delay-tolerant application requests 

during the time. 

Similar to many previous works, for tractability and 

enabling manageable analysis, we consider a time-

discrete system model in which the proposed task 

placement algorithm starts at the beginning of the 

predefined time intervals with an equal length of Δ2 , 

denoted by  T = {t1,t2,…,tW} (Δ1 ≪ Δ2). 

Each user Uj  periodically generates new application 

requests. 𝐴(𝑖𝑑,  𝑈𝑗,𝑡𝑘)
= (𝐿,𝐾,𝐷,𝑊)  denotes a request 

with identifier id owned by the user Uj 𝑗 ∈ {1,2,…,M} at 

time interval tk, where L is the number of instructions, K 

is the class of the requested application (delay-sensitive 

or delay-tolerant), D is the deadline constraint, and W 
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determines whether the request received from an IoT 

device or a neighboring fog node. We assumed that each 

delay-sensitive request has a hard deadline. Thus, a 

delay-sensitive request waiting in the queue is rejected by 

the system after missing the deadline. Delay-tolerant 

requests do not have deadline constraints but they may 

fail if the mobile device leaves the coverage area of the 

serving fog node during the execution of the request. 

Each FNi  at time interval S𝑘 serves a set of mobile users 

located in its coverage area Ci , represented by 

H(i,sk)={U(f1),…,U(fk)} where {f
1
,f2,…,fk } ∈ {1,2,…,M} 

and ∀i,j∈{1,2,…,N}: H(i,sk)∩H(j,sk)=∅.  In other words, 

each Uj is served by only one fog node in time slot S𝑘. 

When the mobile node Uj sends the request 𝐴(𝑖𝑑, 𝑈𝑗,𝑡𝑘)
, it  

is  initially  assigned  to  a  nearby  fog  node at its access 

point 𝐹𝑁𝑖: 𝑈𝑗 ∈ 𝐻(𝑖,tk) , hereinafter referred to as the 

primary fog node. The notation used in this paper is 

presented in Table II. 

Using this system model, we aim to determine the 

suitable node to process a user request. In the proposed 

approach, service requests, especially delay-sensitive 

ones, as much as possible are handled in the fog nodes. If 

the primary fog node (the first fog node that receives the 

request from the IoT device) does not have enough 

resources to fulfill the request or it had a high load of 

requests, the request is forwarded to the cloud. Moreover, 

if it is predicted that the location of the user submitting 

the request falls outside the coverage area of the serving 

fog node, the request will be forwarded to the 

neighboring fog nodes in the same domain. 

 

4. The proposed method 

In this section, at first the proposed approach for 

managing the mobility of users is presented. Then, the 

proposed algorithm for task placement in fog computing 

is described in detail. 

 

4.1. The proposed approach to manage the mobility of 

users  

Mobile devices can change their locations dynamically. 

To forecast the future location of a mobile device, the two 

characteristics of direction and velocity are considered. 

According to Fig. 2, in the mobile device, the Mobility 

Manager module updates the users’ direction, velocity, 

and geographical location periodically over the specified 

time intervals S𝑘. In our discrete-time model, the set of 

mobile users 𝐻(𝑖,𝑠𝑘)  served byFN𝑖  remains unchanged 

during time interval S𝑘;  while it may change across 

different time intervals. 

Table II. Notations used in this paper. 

Notation Description 

 

FD 

 

Set of all available fog nodes in the fog domain 

N The number of fog nodes 

iFN  ( 1, , )i iN FN FD     
ith fog node 

iQ  FN𝑖 's Queue 

iNL  List of neighboring fog nodes of FN𝑖 

iR  FN𝑖 's coverage area 

iC  A square circumscribed by the FN𝑖 's coverage area R𝑖 

M Total number of mobile users 

 1 2, , , MU U U U   Set of mobile users 

jVel  Velocity of the jth user 

jDir  Movement direction of the jth user 

jLoc  Location of the jth user 

Z Total number of time slots for updating users' location 

 1 2S , , , Zs s s   Set of all discrete time intervals for updating users' location 

1Δ  Length of time slot 𝑆𝑘 , 𝑘 ∈ 𝑆 = {S1,S2,…,Sz} 

w Total number of discrete time intervals for performing the task 

placement algorithm 

 1 2T , , , Wt t t   Set of all discrete time intervals for performing the task 

placement algorithm 

2Δ  Length of time interval 𝑡𝑘 , 𝑘 ∈ {1,2, … ,𝑊} 

𝐴(𝑖𝑑,  𝑈𝑗,𝑡𝑘) Application request with identifier id owned by the user U𝑗 at 

time interval t𝑘. 

𝐿𝐴(𝑖𝑑,  𝑈𝑗,𝑡𝑘) Number of instructions of 𝐴(𝑖𝑑,  𝑈𝑗,𝑡𝑘) 

𝐾𝐴(𝑖𝑑,  𝑈𝑗,𝑡𝑘) Class of 𝐴(𝑖𝑑,  𝑈𝑗,𝑡𝑘) 

𝐷𝐴(𝑖𝑑,  𝑈𝑗,𝑡𝑘) Deadline constraint of 𝐴(𝑖𝑑,  𝑈𝑗,𝑡𝑘) 

𝑊𝐴(𝑖𝑑,  𝑈𝑗,𝑡𝑘)
 Is 𝐴(𝑖𝑑,  𝑈𝑗,𝑡𝑘) from an IoT device or a neighboring fog node? 
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f fi s
H U U   The set of IoT devices in R𝑖 at time interval s𝑘 

 
Fig. 2. The proposed approach for user mobility management 

In Fig. 2, the Location Prediction function in the mobile 

device is responsible to forecast the user’s location in the 

future time interval S𝑘+1. This prediction is performed by 

assuming that the direction and velocity of the user will 

not change during the current time interval  S𝑘 . This 

assumption often works when the length of the time 

intervals is considered small enough. 

The first time a mobile node 𝑈𝑗  requests a service, the 

primary fog node sends it information about its coverage 

area. Whenever the forecasted location of the 𝑈𝑗  falls 

outside the sub-coverage area C𝑠  of the serving fog 

node FN𝑠, the “leave” message is sent by the 𝑈𝑗 to FN𝑠. 
After the “leave” message received by the Mobility 

Controller module in FN𝑠, it sends the information of the 

neighboring fog node that the mobile user is moving 

towards it, referred to as FN𝑑 , to the 𝑈𝑗  as a response. 

Moreover, the Request Forwarder in the Fog Resource 

Allocator module notifies  FN𝑑  of the arrival of 𝑈𝑗  and 

also sends the𝑈𝑗’s non-executed requests to it.  From now 

on, 𝑈𝑗 sends its requests to the FN𝑑. The Process Engine 

Module in the mobile and fog devices plays the role of 

the interface and is responsible for sending requests and 

responding to other nodes. 

 

4.2. The proposed algorithm for task placement 

The proposed task placement algorithm, called TICC(Ө′,

1 2Δ ,Δ ,γ),  has two parts. The first part decides where the 

requests in the queue of a fog node should be scheduled 

so that deadline constraints are met, and the second part 

manages the user requests arriving from the neighboring 

fog nodes. 

The first part of the proposed algorithm is run in each FN𝑖 
at the beginning of each time interval t𝑘 with length Δ2, 

to decide where to process the requests in Q𝑖 (serving fog 

node, neighboring fog node, or cloud). This decision 

depends on some factors including request priority 

(application class), user mobility, and load of requests in 

the fog node. 

In the proposed algorithm, the decision on where to serve 

requests is made based on criterion 𝜃  which is 

proportional to the current load of fog nodes. If FN𝑖 is 

overloaded, some of its requests can be forwarded to the 

cloud. Fog node overloading refers to the situation in 

which a substantial number of requests in the queue are 

not serviced because of the high rate of incoming users 

into the fog node’s coverage area compared to their leave 

rate. This situation results in the increase of waiting time 

of requests in the queue and deadline expiration of delay-

sensitive requests. Criterion 𝜃 for FN𝑖 at the time interval 

t𝑘  is calculated based on the result of multiplying the 

entry-exit ratio of users 𝐸(𝑖,𝑡𝑘−1)  by the estimated time 

required to perform current requests that are waiting in 

the queue 𝑇𝑄(𝑖,𝑡𝑘) . 

Ө(𝑖,𝑡𝑘) = 𝐸(𝑖,𝑡𝑘−1) × 𝑇𝑄(𝑖,𝑡𝑘) .             (1) 

Equation (2) is used to calculate the entry-exit ratio of 

users at time interval t𝑘 inFN𝑖: 
 

𝐸(𝑖,𝑡𝑘) =

{
 
 

 
 

𝜖 𝑂(𝑖,𝑡𝑘) = 0 𝐴𝑛𝑑 𝐼(𝑖,𝑡𝑘) = 0

𝐼(𝑖,𝑡𝑘) 𝑂(i,𝑡𝑘) = 0 𝐴𝑛𝑑 𝐼(𝑖,𝑡𝑘) > 0

(
 𝐼(𝑖,𝑡𝑘)

𝑂(𝑖,𝑡𝑘)
) + 𝜖 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

. (2) 

where, 𝐼(𝑖,𝑡𝑘) = |𝐻(𝑖,𝑠𝑗) − 𝐻(𝑖,𝑠𝑗′)| is the number of users 

entering into the FN𝑖 ’s sub-coverage area (C𝑖) , while  

𝑂(𝑖,𝑡𝑘) = |𝐻(𝑖,𝑠𝑗) − 𝐻(𝑖,𝑠𝑗")| stands for users left out of C𝑖 

in the time interval 𝑡𝑘, 𝑠𝑡𝑎𝑟𝑡(𝑡𝑘) ∈ 𝑠𝑗, 𝑠𝑡𝑎𝑟𝑡(𝑡𝑘−1) ∈ 𝑠𝑗′ 
and 𝑠𝑡𝑎𝑟𝑡(𝑡𝑘+1) ∈ 𝑠𝑗". The higher the entry-exit ratio, 

the greater the number of users inC𝑖 , which in turn 

increases the likelihood of fog node overloading. 𝜖 

represents a small positive value adopted to prevent 

𝐸(𝑖,𝑡𝑘) from becoming zero. The value of zero for 𝐸(𝑖,𝑡𝑘−1) 

ignores the effect of 𝑇𝑄(𝑖,𝑡𝑘)  on calculation of Ө(𝑖,𝑡𝑘). 

Precise calculation of the execution time of an 

application request is a challenging issue and depends on 

many factors. We estimate the time needed to process the 

requests of Q𝑖  in FN𝑖  over the time interval t𝑘  by 

Equation (3). 

𝑇𝑄(𝑖,𝑡𝑘) =
∑ 𝐿𝐴(𝑖𝑑,𝑈𝑗,𝑡𝑘)∀ 𝐴(𝑖𝑑,𝑈𝑗,𝑡𝑘) 𝑖𝑛 𝑄𝑖

𝑃𝑖
/1000 (3) 
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where, 𝐿𝐴(𝑖𝑑,𝑈𝑗,𝑡𝑘)
(𝑀𝐼) is the number of instructions of 

request  A(id,Uj,tk) in Q𝑖, and P𝑖(MIPS)  stands for the total 

processing capacity of FN𝑖 . The risk of overloading 

increases with the increased time required to process 

users’ requests. 𝑇𝑄(𝑖,𝑡𝑘) is in milliseconds.  

If the value  Ө(𝑖,𝑡𝑘)  obtained by Equation (1) is greater 

than the predetermined threshold Ө′, the FN𝑖 is expected 

to become overloaded in the next time interval (t𝑘+1); 

hence, the delay-tolerant requests in its queue would be 

sent to the cloud. The threshold value is determined 

according to the number of failed requests in each fog 

node as described in section 5. 

Based on the results of overload prediction, placement 

and scheduling of requests in the fog node proceed in the 

following steps: 

 Fog node: At any time interval t𝑘 and in the absence 

of overload probability in the fog node, the node will 

handle requests itself with free processing capacity. 

 Cloud node: If it is predicted that the fog node would 

be overloaded in the next time intervalt𝑘+1, all delay-

tolerant requests in the queue will be sent to the cloud. 

The purpose of this transfer is to reduce the time 

required for servicing delay-sensitive requests and to 

increase their acceptance rate. 

The second part of the proposed algorithm is run in each 

FN𝑖  at the beginning of each time slot S𝑘  with time 

length Δ1, to decide where to process the arrived requests 

from neighboring fog nodes (fog node or cloud). As 

stated, if it is predicted that a user will move from the 

serving fog node (FN𝑠 )’s sub-coverage area (C𝑠 ) to a 

neighboring fog node (𝐹𝑁𝑑 )’s sub-coverage area (C𝑑 ) 

within its domain, its requests in the FN𝑠’s queue will be 

transferred to theFN𝑑. The FN𝑑 can accept these requests 

or send them to the cloud. If the time demanded to 

process the requests ofFN𝑑’s queue (𝑇𝑄(𝑑,𝑡𝑘)
) is bigger 

than the threshold 𝛾, the delay-tolerant requests arrived 

from the neighboring fog nodes will be sent to the cloud 

and the delay-sensitive ones will remain inQ𝑑 . The 

threshold value 𝛾 is determined according to the number 

of failed requests in each fog node, as described in section 

5. 
 

5. Simulation and results 

In this section, we first present the simulation setup, and 

then, we evaluate the efficiency of the proposed method 

for task placement in fog computing. 

 

5.1. Simulation setup  

The ifogSim simulator was employed to simulate the 

proposed method for task placement [21]. The fog nodes 

were modeled according to the architecture mentioned in 

Fig. 1. A proxy server established the connection 

between the fog nodes and the cloud. Table III presents 

the configuration parameters of cloud, fog and mobile 

nodes including the processing capacity (MIPS), RAM 

(MB), uplink bandwidth, and downlink bandwidth. 

 

 

Table III. Characteristics of the computational devices. 

 

Device type CPU length 

(MIPS) 

RAM 

(GB) 

Uplink bandwidth 

(MB) 

Downlink bandwidth 

(MB) 

 

Cloud 

 

44800 

 

40 

 

100 

 

10000 

Proxy server 2800 4 10000 10000 

Fog node 2800 4 10000 10000 

Mobile device 1000 1 10000 270 

 

Fog nodes were connected to a proxy (service function) 

through a network link with 4ms of latency [19]. The link 

between the gateway and the cloud had 100 ms of latency. 

Furthermore, the communication latency among fog 

nodes and between fog and mobile nodes were 

considered 20 and 2 ms, respectively. 

We considered two types of applications: delay-sensitive 

and delay-tolerant. For the former, similar to [19], we 

used the electroencephalography (EEGPT) online game. 

The objective of EEGPT is to gather target objects by 

concentrating on them. To experience a true online game, 

fast processing and low response time of user requests are 

critical. This game consists of EER, client, concentration 

calculator, coordinator, and display modules. EER and 

display modules should be placed in mobile nodes while 

other modules are placed in both fog and cloud nodes 

[19]. For the delay-tolerant type, we considered a video 

surveillance/object tracking (VSOT) application which 

can tolerate datacenter distance latencies. The VSOT 

application has some distributed intelligent cameras that 

can track movement. This application has six modules as 

follows: camera, motion detector, object detector, object 

tracker, user interface, and zoom (PTZ) control. Camera 

and motion detector modules must be placed in mobile 

nodes, while user interface modules are placed in the 

cloud. Other modules can be placed both in fog and cloud 

nodes [19]. 

Real-time IoT applications are considered to work based 

on the Sense-Process-Actuate model [22]. Each sensor 

periodically transmits tasks at a specified rate. These 

tasks are forwarded to different modules of the IoT 

applications, and processed based on the dependency 

model among constituent modules. Each module receives 

tasks from predecessor modules as input and executes 

them, and produces respective tasks as its output to be 

forwarded to the next modules. The final results will be 

forwarded to the actuator as the last module. 

To simulate user mobility, we assumed a geographical 

area of 1440*1440 m2 (a segment of a city) for a fog 

domain that was divided into nine sub-areas 𝐶𝑖: 𝑖 ∈
{1,2,…,9} with the same size (Fig. 3). We created one fog 

node for each sub-area. As can be seen in Fig. 3, 

FN𝑖 covers the area R𝑖 of a radius of 340 m. 
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Fig. 3. Geographical area intended for the simulation. 

For illustration purpose, the mentioned area can be 

assumed as a large department store, which includes 

several buildings. Users are allowed to navigate through 

various sections of the store that may cause a user to leave 

the coverage area of its serving fog node. Selection of a 

suitable fog node for the user that leaves the coverage 

area of its present fog node when several fog nodes are 

available is challenging. Hence, for reducing complexity, 

we assumed that the requests of the user located in the 

specific sub-area C𝑖  were just served by the 

corresponding fog node of that area (FN𝑖). The two fog 

nodes FN𝑖  and FNj ∀i,j∈{1,2,…,𝑁}  were considered as 

neighbors if C𝑖  and C𝑗  had a common border. For 

example, in Fig. 3, the neighboring fog nodes for FN2 are 

FN1, FN3, and FN5. 

We also assumed that half of the users play EERPT with 

their smartphones and others run the VSOT application. 

During special hours of the day (e.g. lunch time), users 

move to a particular region (e.g. the restaurant) that may 

result in the overloading of the associate fog node. 

At the beginning of the simulation process, six mobile 

nodes were connected to each fog node ( |𝐻(𝑖,𝑠1)| =

6 ∀𝑖 ∈ {1,2,… ,𝑁}, 𝑁 = 9). Mobile devices 𝐻(𝑖,𝑠1) were 

randomly placed in the coverage area 𝐶𝑖  of the 

corresponding fog node (FN𝑖). To update the location of 

a mobile node, the two characteristics of direction and 

velocity are considered. The direction of the mobile node 

can be one of the eight cardinal or ordinal directions. The 

user’s velocity is also selected from [0-1.5] km/h. The 

velocity range was defined according to the average 

speed of pedestrians when walking into a department 

store. Initially, the velocity and direction of the mobile 

nodes were selected at random. 

The users’ movement direction was set towards the 

coverage area of a particular fog node (FN5 in this paper) 

with predefined probability over the simulation process 

to create overloading at that node in order to facilitate the 

evaluation of the performance of the proposed method 

under the overloading situation. 

Each mobile user submits 500 requests during the 

simulation process (20000 ms). As a result, a total 

number of 27,000 requests are submitted by the mobile 

nodes. It was assumed that each mobile node has a sensor 

and an actor. Each sensor generates a request and sends 

it to a higher layer, i.e. the mobile node. The time interval 

between submitting two consequent requests by a sensor 

is randomly selected from [10-15] ms. The user’s 

location in the mobile node is updated every 1 second 

(∆1= 1𝑠). Also, the length of the time interval to perform 

the task placement algorithm in each fog node is taken as 

15 milliseconds (∆2= 15 𝑚𝑠). 
The execution deadline of delay-sensitive requests, i.e. 

the maximum amount of time for the difference between 

the time the request was sent in the sensor and the time 

the response was received in the actor, was randomly 

selected from [250-750] ms for each request. The 

simulation parameters are presented in Table IV. 

 

Table IV. Simulation parameters. 

 

Value Parameter 

 

9 

 

N 

54 M 

500 #𝐴(𝑖𝑑,  𝑈𝑗,𝑡𝑘) for each 
jU  

[10-15] ms Time interval of request 

submission 

1000 ms 
1  

15 ms 
2  

[0-1.5] km/h    1,2, ,jVel j M   

{north, east, south, west, 

northeast, southeast, 

southwest, northwest} 

   1,2, ,jDir j M   

[0-1440]*[0-1440]m2    1, 2, ,jLoc j M   

[250-750] ms 𝐷𝐴(𝑖𝑑,  𝑈𝑗,𝑡𝑘)
 

20 Z 

80 W 

https://en.wikipedia.org/wiki/North
https://en.wikipedia.org/wiki/East
https://en.wikipedia.org/wiki/South
https://en.wikipedia.org/wiki/West


Tabriz Journal of Electrical Engineering (TJEE), vol. 54, no. 1, Spring 2024                                                                                                Serial no. 107 

107 
 

5.2. Adjusting the threshold 

As noted in section 4, the number of failed requests 

during the simulation was used to calculate the thresholds 

Ө’ and γ. Fig. 4 shows the value of Ө and the number of 

failed requests in the fog nodes during a simulation run. 

To determine the Ө’ and γ. thresholds, the values of Ө 

and 𝑇𝑄(𝑖,𝑡𝑘)  were recorded when the number of failed 

requests in the fog node is between 100 and 150, 

respectively. Then, in each run the median of recorded 

values of Ө was calculated. Finally, the average of the 

medians was chosen as the threshold Ө’ with a value of 

5.4 after the simulation process was run 10 times. Also, 

the average median of recorded values of 𝑇𝑄(𝑖,𝑡𝑘)  was 

considered as the threshold γ whose value equals 9.49. 

Also, the value of ϵ in Equation (2) is considered to be 

0.001. 

 

5.3. Evaluation of the proposed task placement 

method 

The proposed method was compared with FCFS, Cloud-

only, and the Delay-priority algorithms [19]. In the FCFS 

algorithm, requests in the fog node’s queue are serviced 

sequentially without any priority. Depending on the 

processing power of a fog node (in this paper only CPU 

capacity is considered) at any given time interval, 

multiple requests can be executed simultaneously. In the 

traditional Cloud-only algorithm, all requests are sent to 

the cloud and no requests are processed in fog nodes. This 

algorithm is based on the traditional cloud-based 

implementation of applications. In the Delay-priority 

algorithm requests are executed like FCFS and in the 

absence of available capacity of fog nodes, delay-tolerant 

requests are scheduled in the cloud. In FCFS and Delay-

priority algorithms, the closest fog node is selected to 

process the user request. 

In the rest of this section, the results are averaged over 10 

different runs. Table V presents the mean, best, worst, 

and standard deviation percentage of failed requests, as 

well as the percentage of delay-sensitive requests that 

failed for different algorithms during 10 simulated runs. 

As can be seen in Table V, TICC(Ө′,
1 2Δ ,Δ ,γ) algorithm 

obtained better results than the other three methods. The 

reason for this is the transfer of delay-tolerant requests 

considering the entry-exit ratio of requests and the queue 

load in fog nodes which leads to the reduction of the 

number of requests in the fog node’s queue, so the delay-

sensitive requests are serviced in a shorter time. The role 

of predicting users leaving the current fog node areas and 

sending their non-executed requests to neighboring fog 

nodes cannot be ignored. This eliminates the need to fail 

requests due to the mobility of users so that as many 

requests would be executed as possible. 

 

Table V.  The mean, best, worst, and standard deviation 

of the results obtained by each algorithm during 10 runs. 

 A
lg

o
rith

m
 

Failed requests Delay-sensitive failed 

requests 

Mean Best Worst Std Mean Best Worst Std 

 

FCFS 

 

65.57 

 

9.31 

 

75.88 

 

19.87 

 

90.09 

 

95.06 

 

84.16 

 

3.4 

Cloud-

only 

39.86 40 39.69 0.11 79.71 80.01 79.39 0.22 

Delay-

priority 

23.72 26.85 18.87 2.42 45.27 51.59 35.84 4.7 

TICC 12.07 13.7 8.09 1.67 23.93 27.01 15.98 3.32 

 
Fig. 4. Normalized values of Ө and the number of failed requests during the simulation in all fog nodes. 
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Fig. 5 shows the performance of the proposed approach 

for mobility management. As shown in Fig. 5, sending 

users’ requests to the neighboring fog nodes (before they 

leave the current fog node’s coverage area) increases the 

acceptance rate of requests and reduces the percentage of 

failed requests. Some of the requests that fail due to the 

mobility of users can be executed in neighboring nodes. 

Forwarding the requests of the mobile user at the 

boundary of two fog nodes before the user’s leaving 

allows requests to be received and serviced faster at the 

destination fog node. 

To evaluate the performance of the proposed method in 

the case of fog node overloading, the percentage of failed 

requests and delay-sensitive failed requests in the 

overloaded fog node (FN5)  are shown in Fig. 6. As 

mentioned earlier, for FN5 to become overloaded during 

the simulation process, users move to that node with a 70% 

probability. The results in Fig. 6 indicate that in FN5 , 

fewer requests were failed due to TICC(Ө′,
1 2Δ ,Δ ,γ) 

algorithm use. Also, according to this figure, a significant 

percentage of requests (23.17%) in the FCFS algorithm 

were failed in overloading conditions. 

Table VI compares the average, best, worst and standard 

deviation for response time of requests in the proposed 

method with the other three algorithms. Response time 

refers to the time difference between the moment a sensor 

sends a request and the moment an actor receives the 

response. As can be seen, the average response time of 

delay-sensitive requests in TICC(Ө′,
1 2Δ ,Δ ,γ) algorithm 

is shorter than other methods. Although TICC(Ө′,
1 2Δ ,Δ ,γ) 

has a shorter average response time in comparison with 

other algorithms, this time is obtained for more number of 

requests. The difference between the lengths of delay-

sensitive tasks and the lengths of delay-tolerant ones has 

caused the average response time of delay-sensitive 

requests to be higher than the average response time of all 

requests. As seen in Table VI, this difference is observed 

in all four evaluated algorithms. 

Fig. 7 shows the percentage of failed requests in TICC(Ө′,

1 2Δ ,Δ ,γ) algorithm compared to FCFS and Delay-priority 

algorithms when different values of 10, 15, 20, and 25 (ms) 

are selected for the time interval of execution of 

scheduling algorithms. 

 
Fig. 5. Performance of the proposed approach for mobility management. 

 
Fig. 6. Percentage of failed requests in fog node 5 using FCFS, Delay- priority and TICC(Ө′,

1 2Δ ,Δ ,γ) algorithms. 

 

Table VI. The mean, best, worst, and standard deviation of the response times obtained by each algorithm for 10 runs. 

 

Algorithm 
Failed requests Delay-sensitive failed requests 

Mean Best Worst Std Mean Best Worst Std 

 

FCFS 

 

1080.02 

 

976.5 

 

1197.09 

 

71.79 1495.86 13.79.79 1625.45 74.49 

Cloud-only 900.05 894.68 904.06 2.78 901.45 896.96 905.69 0.11 

Delay-priority 300.33 234.94 373.02 37.36 464.44 323.44 615.08 76.74 

TICC 263.84 226.18 346.32 36.38 327.63 241.67 487.44 73.07 

  

12.07

23.93

5.28 6.80

16.68

32.33

10.74
5.94

Failed requests Delay-sensitive failed

requests

Failed requests due to

mobility of users

Failed requests due to

deadline violation

TICC TICC without

23.17

7.87

3.67

11.68

7.79

3.67

FCFS Delay-periorty TICC

Failed requests Delay-sensitive failed requests
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Fig. 7. Percentage of failed requests in FCFS, Delay-

priority, and TICC(Ө′,
1 2Δ ,Δ ,γ) algorithms for different 

time intervals. 

According to Fig. 7, the lowest percentage of failed 

requests in all algorithms is when the time interval of 15 

ms is selected. For this reason, as mentioned in section 5.1, 

the time interval to calculate Ө(Δ2) in each fog node was 

taken as 15 ms. In addition, according to Fig. 7, the 

proposed algorithm is performed better in comparison 

with FCFS and Delay-priority algorithms for different 

values of time intervals. 

Finally, to determine the statistical differences between 

TICC(Ө′,
1 2Δ ,Δ ,γ) and the compared algorithms, the 

Friedman test is conducted. To this end, we defined an 

objective function that multiplies the average percentage 

of failed requests by the average response time obtained 

through 10 runs for each algorithm. When the significance 

level (𝛼) is set to 0.05, the results of the Friedman test are 

presented in Table VII. As seen in Table VII, TICC(Ө′,

1 2Δ ,Δ ,γ) has the smallest mean ranking value which 

means it obtains the best overall rank. Also, the obtained 

p-value is smaller than the significance level. When the p-

value is greater than the significance level, the difference 

is not statistically significant. However, since the p-value 

obtained by the Friedman test is less than 0.05, the 

compared algorithms are significantly different. 

In summary, experimental results show that the proposed 

method for task placement in fog computing outperforms 

FCFS, Cloud-only, and Delay-priority algorithms in terms 

of acceptance rate and average response time of requests. 

Table VII. The results of the Friedman test for (𝛼 = 0.05). 

Algorithm 
Mean 

rank 
p-value Diff? 

 

FCFS 

 

3.90 
2.33e-6 yes Cloud-only 3.10 

Delay-priority 2.00 

TICC 1.00 

 

6. Conclusion  

The issue of user mobility, along with the different latency 

requirements of different applications, necessitates the 

development of new methods of task placement that can 

provide the best possible performance and QoS to mobile 

users. This paper proposed an efficient method for task 

placement with respect to hierarchical architecture in fog 

computing. The proposed method supported user mobility 

and was able to handle different requests with different 

latency requirements. In the proposed method, the 

decision on where to process a request was done 

according to the mobility of users, prediction of 

overloading in the fog nodes, and the priority of requests. 

The experimental results showed that the proposed 

method outperforms the FCFS, Cloud-only, and Delay-

priority algorithms in terms of acceptance rate and 

response time. Also, compared to the other three methods, 

the proposed method performed better in overload 

conditions. We aim to improve the proposed formula to 

overload prediction, use data mining techniques to 

identify users’ mobility patterns, and employ different 

scheduling algorithms as future work. 
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