
Tabriz Journal of Electrical Engineering (TJEE), vol. 54, no. 1, Spring 2024 Serial no. 107

Task Placement in Fog Computing Considering

User Mobility and Overload

S. Ansari Moghaddam, S. Noferesti*, M. Rajaei

Information Technology Department, Faculty of Electrical and Computer Engineering, University of Sistan and

Baluchestan, Zahedan, Iran.

samira.ansary96@gmail.com, snoferesti@ece.usb.ac.ir, rajayi@ece.usb.ac.ir
*Corresponding author

Received: 08/03/2023, Revised: 20/05/2023, Accepted: 14/10/2023.

Abstract

Efficient distribution of service requests between fog and cloud nodes considering user mobility and fog nodes’ overload

is an important issue of fog computing. This paper proposes a heuristic method for task placement considering the mobility

of users, aiming to serve a higher number of requested services and minimize their response time. This method introduces

a formula to overload prediction based on the entry-exit ratio of users and the estimated time required to perform current

requests that are waiting in the queue of a fog node. Then, it provides a solution to avoid the predicted overloading of fog

nodes by sending all delay-tolerant requests in the overloaded fog node’s queue to the cloud to reduce the time required

for servicing delay-sensitive requests and to increase their acceptance rate. In addition, to prevent requests from being

rejected when the mobile user leaves the coverage area of the current fog node, the requests in the current fog node’s

queue will be transferred to the destination fog node. Simulation results indicate that the proposed method is effective in

avoiding the overloading of the fog nodes and outperforms the existing methods in terms of response time and acceptance

rate.

Keywords

Fog computing, Task placement, User mobility, Overload prediction.

1. Introduction

We have witnessed much research and significant

technological advances since Kevin Ashton used the term

Internet of Things (IoT) in 1999 [1]. One of the main

challenges of IoT is to provide an appropriate way to

store and process the huge amount of data generated by

IoT devices. Cloud computing, thanks to providing an

almost infinite amount of storage and processing space,

can be very useful in addressing such challenges [2].

However, cloud computing is unable to satisfy the

requirements for time-critical applications such as smart

healthcare due to its unreliable latency and lack of

mobility support [3].

Fog computing, which provides computing resources and

services at the edges of the network, has been proposed

to address the mentioned problems. Fog computing is a

distributed computing paradigm that acts as an

intermediate layer between the cloud and IoT devices.

Data generation and processing can be handled through

intelligent networking devices called fog nodes at the fog

layer which leads to low-latency access and faster

response to application requests when compared to the

cloud. Furthermore, fog computing supports mobile

applications with different latency requirements.

Fog computing has many research challenges [4]. One of

these is task placement (i.e., selection of the appropriate

computing node for executing the incoming task) while

considering different QoS requirements of different

applications. Among these requirements, the latency of

deadline-constrained applications is critical. It is

expected that this kind of applications can be executed

within their respective deadlines. This raises a new

challenge for task placement and scheduling: deciding

when and where (fog/cloud) to process the application

requests to satisfy their requirements.

Task placement and scheduling in cloud computing are

well-studied [5, 6]. However, the rapid increase in the

number of IoT devices and application requests, limited

resources of the fog nodes, and the mobility of users

make task placement in fog computing more challenging.

With the growing use of mobile devices, the fog

computing framework is required to be adapted to the

specific needs of mobile users. Mobile users frequently

move from the area covered by one fog node to another

and their access points to communicate with the fog

nodes change. This may affect the latency QoS of IoT

services. Due to the limited service coverage of fog nodes,

the mobility of users when leaving the coverage area of

the serving fog node will cause service loss or excess

delay (because of an increase in the hop counts). To

maintain the service continuity and to ensure timely

service delivery, the requests are preferred to relinquish

to a fog node that is closer to the access point to which

the user device is connected. However, when this fog

node does not have sufficient available resources to

support new service requests, these requests should wait

in the queue for execution, which increases the time delay

and affects the execution deadline constraints of latency-

sensitive applications. On the other hand, the movement

of users towards a single resource-constrained fog node

mailto:samira.ansary96@gmail.com
mailto:snoferesti@ece.usb.ac.ir

Tabriz Journal of Electrical Engineering (TJEE), vol. 54, no. 1, Spring 2024 Serial no. 107

100

and consequently an increase in the number of arriving

requests may result in overload on that node. The

performance of the overloaded fog node decreases

significantly and it will not be able to meet the demands

of latency-sensitive applications [7].

Hence, mobility is a significant issue of task placement

in fog computing. Previous works to task placement in

fog computing have rarely considered user mobility

issues. This paper proposes a new method for task

placement adapted for mobile users, aiming at

maximizing the number of completed requests with

respect to their deadline constraints. Simulation results

show that considering user mobility can significantly

reduce the probability of overloading on fog nodes and

improve the acceptance rate of service requests while

taking into account their requirements in terms of

response time. In summary, the main contributions of this

paper are as follows:

 Proposing a new method for distributing the incoming

user requests to the computing devices in the

network (fog or cloud nodes) while meeting their

deadline and minimizing their response time.

 Introducing a method for predicting overload in the

fog node, and accordingly deciding to process the

delay-tolerant requests in the fog or send them to

the cloud in order to increase the acceptance rate,

especially for high-priority requests (delay-

sensitive ones)

 Considering the mobility of users and providing a

solution to prevent requests from being rejected

when the mobile user leaves the coverage area of

the current fog node, by moving the user requests

from the current fog node’s queue to the queue of

the neighboring fog node.

The organization of the paper is as follows: Section 2

reviews the research for task placement in fog computing.

Section 3 describes the system model. Section 4 details

the proposed method for task placement in fog computing.

Section 5 presents the results of experiments performed

to evaluate the proposed method. Finally, Section 6

draws some conclusions.

2. Literature review

In recent years, the issue of task placement in fog

computing has been of great interest to researchers. In [8],

a comprehensive overview of the existing approaches for

task placement was provided. Generally, existing works

for task placement can be divided into four exact,

heuristic, metaheuristic, and hybrid methods. In this

section, we will introduce some of the related works done

in each class.

Many works, such as [9], formulated the task placement

problem with Integer Linear Programming (ILP). ILP

expresses a problem with mathematical constraints and

an objective function that can be solved by generic ILP-

solvers, which guarantee to return the optimal result.

However, exact algorithms are hardly scalable and suffer

from high execution time that is exponential with respect

to the problem size (number of services and fog nodes).

Tran et al. [10] introduced a systematic fog computing

framework consisting of multiple intelligent tiers for the

IoT, and provided a context-aware task placement

approach to optimize service decentralization on fog

computing. This approach that leverages context-aware

information such as location, compute and storage

capacities of fog devices, and expected deadline of an

application, aims at utilizing fog devices available at the

network edges, improving the performance of IoT and

minimizing the latency, energy consumption, and cost.

Some of the existing works used heuristics for task

placement. Xia et al. [11] proposed two backtrack search

algorithms (Exhaustive and Naïve) and two heuristics to

efficiently make task placement decisions. The

Exhaustive search tried to visit all existing solutions for

task placement and returned the best solution that

minimizes the average response time. The Naive search

returned the first found solution. The first heuristic

(Anchor-based fog nodes ordering) aimed at minimizing

the response time returned by the Naïve search and the

second one (Dynamic components ordering) accelerated

the search process.

Khosroabadi et al. [12] presented a heuristic algorithm to

solve the service placement problem in fog computing for

the smart home applications. The main idea of this

algorithm was to place latency-sensitive applications as

much as possible closer to the IoT devices. To this end,

they introduced a hierarchical fog-cloud architecture for

optimization of service placement problem, in which the

fog nodes were clustered and the horizontal connections

between fog nodes were considered.

Natesha and Guddeti [13] introduced two metaheuristics

for service placement in fog computing to minimize the

service cost and ensure the QoS of Industrial IoT (IIoT)

applications: MGAPSO, which was developed by

combining the Genetic Algorithm (GA) and Particle

Swarm Optimization (PSO), and EGAPSO that was

developed by combining the Elitism-based GA and the

PSO.

Goudarzi et al. [14] proposed an optimal version of the

Memetic Algorithm for task placement of multiple IoT

devices on appropriate fog/cloud servers to minimize

their execution time and energy consumption. The

proposed method had three phases: pre-scheduling, batch

application placement, and failure recovery. In the pre-

scheduling phase, the authors proposed an algorithm to

organize the concurrent IoT devices’ workflows. In the

second phase, they proposed a batch application

placement based on the Memetic Algorithm to minimize

the weighted cost of each IoT device. In the third phase,

they embedded a fast failure recovery method in their

method to assign failed tasks to appropriate servers.

The metaheuristic algorithms may fall into the local

optimal trap, and they do not guarantee the optimal

solutions. In addition, the decision time of these

algorithms makes them inefficient for latency-sensitive

and large-sized problems.

Some previous works have focused on hybrid methods.

Kopras et al. [15] proposed a method for task placement

in fog computing aiming at minimizing network energy

consumption while meeting delay constraints specific for

each offloaded task. They formulated a universal non-

convex Mixed-Integer Nonlinear Programming (MINLP)

problem to minimize task transmission- and processing-

related energy and provided an optimal solution by using

the primal and dual decomposition techniques and the

Tabriz Journal of Electrical Engineering (TJEE), vol. 54, no. 1, Spring 2024 Serial no. 107

101

Hungarian algorithm, while the values of the allocation

variables were obtained in a heuristic manner.

Sarkar et al. [16] proposed a deadline-aware dynamic

task placement (DDTP) strategy that selected the

appropriate computing node for each incoming task

while meeting the deadline. At first, the DDTP strategy

classified the incoming tasks based on some task

utilization factors and assigned them to a priority queue

based on their deadlines. Then, a new policy was

proposed to find an appropriate computing device for

meeting the tasks’ deadlines. This policy adopted the

concept of augmenting path to ensure that the maximum

number of tasks was assigned to the corresponding

computing device. Finally, a heuristic dispatch-constraint

offloading strategy was employed to migrate the failed

tasks to another suitable fog node in the same region.

In [17], the joint container placement and task-

provisioning problem for a dynamic fog computing

environment was formulated as an optimization problem

using ILP. Initially, this problem was solved using

CPLEX in an optimal way, and then, metaheuristic PSO-

based and Greedy heuristic algorithms were designed to

solve it. The optimization objective included the

maximization of the number of successful users’ requests

within a predefined time.

According to our studies, previous works for task

placement in fog computing mostly ignore the mobility

of users. In most of the methods introduced in this section,

addressing the issue of mobility in task placement is

considered as future work [12,14,16].

In [17], the effect of fog node mobility on task placement

was studied. To this end, the authors adopted three

scenarios with different mobility patterns: 1) static (5

RSUs), 2) slow mobility (80 cellphones), and 3) fast

mobility (40 vehicles). Sets of real-world vehicle and

pedestrian traces in Manhattan and Rome were used to

simulate the mobility of fog nodes.

In [18], a mobility-aware task offloading and migration

model was proposed. In this model, the mobility of users

was characterized by the sojourn time in each coverage

of fog nodes, which followed the exponential distribution,

and task offloading was formulated as a MINLP problem.

This problem was divided into two sub-problems: 1) A

Gini coefficient-based fog node selection algorithm was

proposed to optimize the offloading decisions, and 2) A

distributed resource optimization algorithm based on the

Genetic algorithm was provided to solve the resource

allocation problem. These algorithms could manage user

mobility in fog computing by reducing the probability of

migration.

The above-mentioned references [17, 18], did not

consider the overload of fog nodes due to user mobility,

and also the deadline constraints of delay-sensitive

applications (users’ requests have the same priority).

The closest work to ours is by Peixoto et al. [19]. They

offered a simple scenario of user mobility, in which

mobile devices move towards a particular cloudlet one by

one. They simulated overloading resulting from user

mobility in a simplified way by increasing the number of

requests in a single fog node. They also proposed the

Delay-priority algorithm in which the delay-tolerant

requests were forwarded to the cloud to satisfy the

requirements of delay-sensitive requests.

Table I presents the overview of the existing works to

task placement in fog computing. As mentioned before,

mobility support is an inseparable feature of the fog

computing architecture. Thus, more research is needed in

this area.

3. System model

We used the three-layer architecture of cloud, fog and,

IoT devices for fog computing [20]. According to Fig. 1,

the lowest layer consists of all the IoT devices that

interact with the end users and are responsible for sensing

the environment and sending the data/requests to the fog

layer. This layer communicates with the fog computing

layer through the access points, gateways, etc.

The fog layer is the middle layer that contains several

heterogeneous and distributed low-power intelligent

devices, referred to as fog nodes, which provide

computing, storage, and networking capabilities. Fog

nodes are clustered into domains. Each fog node has a

limited area of coverage where the desired fog services

are provided. All the fog nodes can communicate with

neighboring fog nodes of the same domain and with the

cloud. Furthermore, fog nodes can handle the mobility

issues of the mobile nodes. Each Fog node can control

and coordinate the mobile users located within its

coverage area.

The cloud layer consists of many high-performance

servers and data centers that are capable of storing and

processing the huge amount of data.

Table I. Summary of the related works for task placement in fog computing.

Reference method

Performance metric

User

mobility

Deadline-

aware

Overload

due to the

mobility
Response time

Acceptance/

rejection rate

Energy

consumption

Network

usage

/cost

[9] Exact - - - - -

[10] Exact - - -

[11] Heuristic - - - - - -

[12] Heuristic - - -

[13] Metaheuristic - - -

[14] Metaheuristic - - - -

[15] Hybrid - - - - -

[16] Hybrid - - - - -

[17] Hybrid - - -

[18] Hybrid - - - -

[19] Heuristic - - - -

Ours Heuristic - -

Tabriz Journal of Electrical Engineering (TJEE), vol. 54, no. 1, Spring 2024 Serial no. 107

102

Fig. 1. Three-layer architecture of cloud, fog and IoT devices.

The standardized approach for performing an application

request in the IoT systems is as follows: An IoT device

sends the service request to the fog layer for processing.

In the fog layer, the fog node which has received the

request from the IoT device can serve it or may cooperate

with other fog nodes in the same domain to execute the

request. If not enough resources are available at the fog

layer, the fog node can forward the request to the cloud

layer.

IoT devices perform several types of applications with

different requirements. To show how the quality of task

placement can be affected by considering different

application classes with different latency requirements,

we classify applications based on their ability to tolerate

delay into two classes: delay-sensitive and delay-tolerant.

The delay-sensitive requests are preferred to be

processed in a nearby fog node due to the low latency

constraints, while the delay-tolerant ones can be executed

in either the fog or the cloud. In fact, the priorities of the

requests are determined based on their deadlines.

The three-layer architecture has many benefits. However,

task placement and scheduling in this architecture face

the following challenges:

 Which node (fog/cloud) and when should process

the service requests, according to the type of

application (delay-sensitive/delay-tolerant)? How

can this decision be made dynamically and quickly?

 How to predict and avoid fog node overloading to

maximize the number of satisfied requests and

minimize their response time?

 How can task placement be accomplished

concerning the mobility of users?

In this paper, we propose an effective method for task

placement in fog computing considering the above-

mentioned issues. Our system model is composed of one

fog domain, hosting N fog nodes, that is defined

as: 𝐹𝐷 = {FN1, FN2, …,FNN}. Each FNi is characterized

by the total processing capacity Pi and its coverage area

Ri . We use the notation Ci to denote the square

circumscribed by the coverage area Ri (the diagonal of

the square is equal to the diameter of the circle). Each

FNi has a list of neighboring fog nodes 𝑁𝐿𝑖 =
{nl\nl∈FD and nl adjacent to FNi} that can forward the

user requests to them and a waiting queue (Qi) for storing

the requests arriving from the users or neighboring fog

nodes.

We consider a set of mobile users 𝑈 = {U1,U2,…,UM}
where each user 𝑈𝑗=(𝑉𝑒𝑙𝑗 ,𝐷𝑖𝑟𝑗 ,𝐿𝑜𝑐𝑗) is characterized by

its velocity 𝑉𝑒𝑙𝑗 , movement direction 𝐷𝑖𝑟𝑗 , and

geographical location 𝐿𝑜𝑐𝑗 . The geographic location of

the mobile node is determined using latitude and

longitude. The velocity, movement direction, and

location of mobile users are updated periodically over the

specified time slots with an equal length of Δ1, denoted

by 𝑆 = {S1,S2,…,Sz}. Each user Uj can generate delay-

sensitive and/or delay-tolerant application requests

during the time.

Similar to many previous works, for tractability and

enabling manageable analysis, we consider a time-

discrete system model in which the proposed task

placement algorithm starts at the beginning of the

predefined time intervals with an equal length of Δ2 ,

denoted by T = {t1,t2,…,tW} (Δ1 ≪ Δ2).

Each user Uj periodically generates new application

requests. 𝐴(𝑖𝑑, 𝑈𝑗,𝑡𝑘)
= (𝐿,𝐾,𝐷,𝑊) denotes a request

with identifier id owned by the user Uj 𝑗 ∈ {1,2,…,M} at

time interval tk, where L is the number of instructions, K

is the class of the requested application (delay-sensitive

or delay-tolerant), D is the deadline constraint, and W

Tabriz Journal of Electrical Engineering (TJEE), vol. 54, no. 1, Spring 2024 Serial no. 107

103

determines whether the request received from an IoT

device or a neighboring fog node. We assumed that each

delay-sensitive request has a hard deadline. Thus, a

delay-sensitive request waiting in the queue is rejected by

the system after missing the deadline. Delay-tolerant

requests do not have deadline constraints but they may

fail if the mobile device leaves the coverage area of the

serving fog node during the execution of the request.

Each FNi at time interval S𝑘 serves a set of mobile users

located in its coverage area Ci , represented by

H(i,sk)={U(f1),…,U(fk)} where {f
1
,f2,…,fk } ∈ {1,2,…,M}

and ∀i,j∈{1,2,…,N}: H(i,sk)∩H(j,sk)=∅. In other words,

each Uj is served by only one fog node in time slot S𝑘.

When the mobile node Uj sends the request 𝐴(𝑖𝑑, 𝑈𝑗,𝑡𝑘)
, it

is initially assigned to a nearby fog node at its access

point 𝐹𝑁𝑖: 𝑈𝑗 ∈ 𝐻(𝑖,tk) , hereinafter referred to as the

primary fog node. The notation used in this paper is

presented in Table II.

Using this system model, we aim to determine the

suitable node to process a user request. In the proposed

approach, service requests, especially delay-sensitive

ones, as much as possible are handled in the fog nodes. If

the primary fog node (the first fog node that receives the

request from the IoT device) does not have enough

resources to fulfill the request or it had a high load of

requests, the request is forwarded to the cloud. Moreover,

if it is predicted that the location of the user submitting

the request falls outside the coverage area of the serving

fog node, the request will be forwarded to the

neighboring fog nodes in the same domain.

4. The proposed method

In this section, at first the proposed approach for

managing the mobility of users is presented. Then, the

proposed algorithm for task placement in fog computing

is described in detail.

4.1. The proposed approach to manage the mobility of

users

Mobile devices can change their locations dynamically.

To forecast the future location of a mobile device, the two

characteristics of direction and velocity are considered.

According to Fig. 2, in the mobile device, the Mobility

Manager module updates the users’ direction, velocity,

and geographical location periodically over the specified

time intervals S𝑘. In our discrete-time model, the set of

mobile users 𝐻(𝑖,𝑠𝑘) served byFN𝑖 remains unchanged

during time interval S𝑘; while it may change across

different time intervals.

Table II. Notations used in this paper.

Notation Description

FD

Set of all available fog nodes in the fog domain

N The number of fog nodes

iFN (1, ,)i iN FN FD
ith fog node

iQ FN𝑖 's Queue

iNL List of neighboring fog nodes of FN𝑖

iR FN𝑖 's coverage area

iC A square circumscribed by the FN𝑖 's coverage area R𝑖

M Total number of mobile users

 1 2, , , MU U U U Set of mobile users

jVel Velocity of the jth user

jDir Movement direction of the jth user

jLoc Location of the jth user

Z Total number of time slots for updating users' location

 1 2S , , , Zs s s Set of all discrete time intervals for updating users' location

1Δ Length of time slot 𝑆𝑘 , 𝑘 ∈ 𝑆 = {S1,S2,…,Sz}

w Total number of discrete time intervals for performing the task

placement algorithm

 1 2T , , , Wt t t Set of all discrete time intervals for performing the task

placement algorithm

2Δ Length of time interval 𝑡𝑘 , 𝑘 ∈ {1,2, … ,𝑊}

𝐴(𝑖𝑑, 𝑈𝑗,𝑡𝑘) Application request with identifier id owned by the user U𝑗 at

time interval t𝑘.

𝐿𝐴(𝑖𝑑, 𝑈𝑗,𝑡𝑘) Number of instructions of 𝐴(𝑖𝑑, 𝑈𝑗,𝑡𝑘)

𝐾𝐴(𝑖𝑑, 𝑈𝑗,𝑡𝑘) Class of 𝐴(𝑖𝑑, 𝑈𝑗,𝑡𝑘)

𝐷𝐴(𝑖𝑑, 𝑈𝑗,𝑡𝑘) Deadline constraint of 𝐴(𝑖𝑑, 𝑈𝑗,𝑡𝑘)

𝑊𝐴(𝑖𝑑, 𝑈𝑗,𝑡𝑘)
 Is 𝐴(𝑖𝑑, 𝑈𝑗,𝑡𝑘) from an IoT device or a neighboring fog node?

Tabriz Journal of Electrical Engineering (TJEE), vol. 54, no. 1, Spring 2024 Serial no. 107

104

1))((,

, , ,
Kk

f fi s
H U U The set of IoT devices in R𝑖 at time interval s𝑘

Fig. 2. The proposed approach for user mobility management

In Fig. 2, the Location Prediction function in the mobile

device is responsible to forecast the user’s location in the

future time interval S𝑘+1. This prediction is performed by

assuming that the direction and velocity of the user will

not change during the current time interval S𝑘 . This

assumption often works when the length of the time

intervals is considered small enough.

The first time a mobile node 𝑈𝑗 requests a service, the

primary fog node sends it information about its coverage

area. Whenever the forecasted location of the 𝑈𝑗 falls

outside the sub-coverage area C𝑠 of the serving fog

node FN𝑠, the “leave” message is sent by the 𝑈𝑗 to FN𝑠.
After the “leave” message received by the Mobility

Controller module in FN𝑠, it sends the information of the

neighboring fog node that the mobile user is moving

towards it, referred to as FN𝑑 , to the 𝑈𝑗 as a response.

Moreover, the Request Forwarder in the Fog Resource

Allocator module notifies FN𝑑 of the arrival of 𝑈𝑗 and

also sends the𝑈𝑗’s non-executed requests to it. From now

on, 𝑈𝑗 sends its requests to the FN𝑑. The Process Engine

Module in the mobile and fog devices plays the role of

the interface and is responsible for sending requests and

responding to other nodes.

4.2. The proposed algorithm for task placement

The proposed task placement algorithm, called TICC(Ө′,

1 2Δ ,Δ ,γ), has two parts. The first part decides where the

requests in the queue of a fog node should be scheduled

so that deadline constraints are met, and the second part

manages the user requests arriving from the neighboring

fog nodes.

The first part of the proposed algorithm is run in each FN𝑖
at the beginning of each time interval t𝑘 with length Δ2,

to decide where to process the requests in Q𝑖 (serving fog

node, neighboring fog node, or cloud). This decision

depends on some factors including request priority

(application class), user mobility, and load of requests in

the fog node.

In the proposed algorithm, the decision on where to serve

requests is made based on criterion 𝜃 which is

proportional to the current load of fog nodes. If FN𝑖 is

overloaded, some of its requests can be forwarded to the

cloud. Fog node overloading refers to the situation in

which a substantial number of requests in the queue are

not serviced because of the high rate of incoming users

into the fog node’s coverage area compared to their leave

rate. This situation results in the increase of waiting time

of requests in the queue and deadline expiration of delay-

sensitive requests. Criterion 𝜃 for FN𝑖 at the time interval

t𝑘 is calculated based on the result of multiplying the

entry-exit ratio of users 𝐸(𝑖,𝑡𝑘−1) by the estimated time

required to perform current requests that are waiting in

the queue 𝑇𝑄(𝑖,𝑡𝑘) .

Ө(𝑖,𝑡𝑘) = 𝐸(𝑖,𝑡𝑘−1) × 𝑇𝑄(𝑖,𝑡𝑘) . (1)

Equation (2) is used to calculate the entry-exit ratio of

users at time interval t𝑘 inFN𝑖:

𝐸(𝑖,𝑡𝑘) =

{

𝜖 𝑂(𝑖,𝑡𝑘) = 0 𝐴𝑛𝑑 𝐼(𝑖,𝑡𝑘) = 0

𝐼(𝑖,𝑡𝑘) 𝑂(i,𝑡𝑘) = 0 𝐴𝑛𝑑 𝐼(𝑖,𝑡𝑘) > 0

(
 𝐼(𝑖,𝑡𝑘)

𝑂(𝑖,𝑡𝑘)
) + 𝜖 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

. (2)

where, 𝐼(𝑖,𝑡𝑘) = |𝐻(𝑖,𝑠𝑗) − 𝐻(𝑖,𝑠𝑗′)| is the number of users

entering into the FN𝑖 ’s sub-coverage area (C𝑖) , while

𝑂(𝑖,𝑡𝑘) = |𝐻(𝑖,𝑠𝑗) − 𝐻(𝑖,𝑠𝑗")| stands for users left out of C𝑖

in the time interval 𝑡𝑘, 𝑠𝑡𝑎𝑟𝑡(𝑡𝑘) ∈ 𝑠𝑗, 𝑠𝑡𝑎𝑟𝑡(𝑡𝑘−1) ∈ 𝑠𝑗′
and 𝑠𝑡𝑎𝑟𝑡(𝑡𝑘+1) ∈ 𝑠𝑗". The higher the entry-exit ratio,

the greater the number of users inC𝑖 , which in turn

increases the likelihood of fog node overloading. 𝜖

represents a small positive value adopted to prevent

𝐸(𝑖,𝑡𝑘) from becoming zero. The value of zero for 𝐸(𝑖,𝑡𝑘−1)

ignores the effect of 𝑇𝑄(𝑖,𝑡𝑘) on calculation of Ө(𝑖,𝑡𝑘).

Precise calculation of the execution time of an

application request is a challenging issue and depends on

many factors. We estimate the time needed to process the

requests of Q𝑖 in FN𝑖 over the time interval t𝑘 by

Equation (3).

𝑇𝑄(𝑖,𝑡𝑘) =
∑ 𝐿𝐴(𝑖𝑑,𝑈𝑗,𝑡𝑘)∀ 𝐴(𝑖𝑑,𝑈𝑗,𝑡𝑘) 𝑖𝑛 𝑄𝑖

𝑃𝑖
/1000 (3)

Tabriz Journal of Electrical Engineering (TJEE), vol. 54, no. 1, Spring 2024 Serial no. 107

105

where, 𝐿𝐴(𝑖𝑑,𝑈𝑗,𝑡𝑘)
(𝑀𝐼) is the number of instructions of

request A(id,Uj,tk) in Q𝑖, and P𝑖(MIPS) stands for the total

processing capacity of FN𝑖 . The risk of overloading

increases with the increased time required to process

users’ requests. 𝑇𝑄(𝑖,𝑡𝑘) is in milliseconds.

If the value Ө(𝑖,𝑡𝑘) obtained by Equation (1) is greater

than the predetermined threshold Ө′, the FN𝑖 is expected

to become overloaded in the next time interval (t𝑘+1);

hence, the delay-tolerant requests in its queue would be

sent to the cloud. The threshold value is determined

according to the number of failed requests in each fog

node as described in section 5.

Based on the results of overload prediction, placement

and scheduling of requests in the fog node proceed in the

following steps:

 Fog node: At any time interval t𝑘 and in the absence

of overload probability in the fog node, the node will

handle requests itself with free processing capacity.

 Cloud node: If it is predicted that the fog node would

be overloaded in the next time intervalt𝑘+1, all delay-

tolerant requests in the queue will be sent to the cloud.

The purpose of this transfer is to reduce the time

required for servicing delay-sensitive requests and to

increase their acceptance rate.

The second part of the proposed algorithm is run in each

FN𝑖 at the beginning of each time slot S𝑘 with time

length Δ1, to decide where to process the arrived requests

from neighboring fog nodes (fog node or cloud). As

stated, if it is predicted that a user will move from the

serving fog node (FN𝑠)’s sub-coverage area (C𝑠) to a

neighboring fog node (𝐹𝑁𝑑)’s sub-coverage area (C𝑑)

within its domain, its requests in the FN𝑠’s queue will be

transferred to theFN𝑑. The FN𝑑 can accept these requests

or send them to the cloud. If the time demanded to

process the requests ofFN𝑑’s queue (𝑇𝑄(𝑑,𝑡𝑘)
) is bigger

than the threshold 𝛾, the delay-tolerant requests arrived

from the neighboring fog nodes will be sent to the cloud

and the delay-sensitive ones will remain inQ𝑑 . The

threshold value 𝛾 is determined according to the number

of failed requests in each fog node, as described in section

5.

5. Simulation and results

In this section, we first present the simulation setup, and

then, we evaluate the efficiency of the proposed method

for task placement in fog computing.

5.1. Simulation setup

The ifogSim simulator was employed to simulate the

proposed method for task placement [21]. The fog nodes

were modeled according to the architecture mentioned in

Fig. 1. A proxy server established the connection

between the fog nodes and the cloud. Table III presents

the configuration parameters of cloud, fog and mobile

nodes including the processing capacity (MIPS), RAM

(MB), uplink bandwidth, and downlink bandwidth.

Table III. Characteristics of the computational devices.

Device type CPU length

(MIPS)

RAM

(GB)

Uplink bandwidth

(MB)

Downlink bandwidth

(MB)

Cloud

44800

40

100

10000

Proxy server 2800 4 10000 10000

Fog node 2800 4 10000 10000

Mobile device 1000 1 10000 270

Fog nodes were connected to a proxy (service function)

through a network link with 4ms of latency [19]. The link

between the gateway and the cloud had 100 ms of latency.

Furthermore, the communication latency among fog

nodes and between fog and mobile nodes were

considered 20 and 2 ms, respectively.

We considered two types of applications: delay-sensitive

and delay-tolerant. For the former, similar to [19], we

used the electroencephalography (EEGPT) online game.

The objective of EEGPT is to gather target objects by

concentrating on them. To experience a true online game,

fast processing and low response time of user requests are

critical. This game consists of EER, client, concentration

calculator, coordinator, and display modules. EER and

display modules should be placed in mobile nodes while

other modules are placed in both fog and cloud nodes

[19]. For the delay-tolerant type, we considered a video

surveillance/object tracking (VSOT) application which

can tolerate datacenter distance latencies. The VSOT

application has some distributed intelligent cameras that

can track movement. This application has six modules as

follows: camera, motion detector, object detector, object

tracker, user interface, and zoom (PTZ) control. Camera

and motion detector modules must be placed in mobile

nodes, while user interface modules are placed in the

cloud. Other modules can be placed both in fog and cloud

nodes [19].

Real-time IoT applications are considered to work based

on the Sense-Process-Actuate model [22]. Each sensor

periodically transmits tasks at a specified rate. These

tasks are forwarded to different modules of the IoT

applications, and processed based on the dependency

model among constituent modules. Each module receives

tasks from predecessor modules as input and executes

them, and produces respective tasks as its output to be

forwarded to the next modules. The final results will be

forwarded to the actuator as the last module.

To simulate user mobility, we assumed a geographical

area of 1440*1440 m2 (a segment of a city) for a fog

domain that was divided into nine sub-areas 𝐶𝑖: 𝑖 ∈
{1,2,…,9} with the same size (Fig. 3). We created one fog

node for each sub-area. As can be seen in Fig. 3,

FN𝑖 covers the area R𝑖 of a radius of 340 m.

Tabriz Journal of Electrical Engineering (TJEE), vol. 54, no. 1, Spring 2024 Serial no. 107

106

Fig. 3. Geographical area intended for the simulation.

For illustration purpose, the mentioned area can be

assumed as a large department store, which includes

several buildings. Users are allowed to navigate through

various sections of the store that may cause a user to leave

the coverage area of its serving fog node. Selection of a

suitable fog node for the user that leaves the coverage

area of its present fog node when several fog nodes are

available is challenging. Hence, for reducing complexity,

we assumed that the requests of the user located in the

specific sub-area C𝑖 were just served by the

corresponding fog node of that area (FN𝑖). The two fog

nodes FN𝑖 and FNj ∀i,j∈{1,2,…,𝑁} were considered as

neighbors if C𝑖 and C𝑗 had a common border. For

example, in Fig. 3, the neighboring fog nodes for FN2 are

FN1, FN3, and FN5.

We also assumed that half of the users play EERPT with

their smartphones and others run the VSOT application.

During special hours of the day (e.g. lunch time), users

move to a particular region (e.g. the restaurant) that may

result in the overloading of the associate fog node.

At the beginning of the simulation process, six mobile

nodes were connected to each fog node (|𝐻(𝑖,𝑠1)| =

6 ∀𝑖 ∈ {1,2,… ,𝑁}, 𝑁 = 9). Mobile devices 𝐻(𝑖,𝑠1) were

randomly placed in the coverage area 𝐶𝑖 of the

corresponding fog node (FN𝑖). To update the location of

a mobile node, the two characteristics of direction and

velocity are considered. The direction of the mobile node

can be one of the eight cardinal or ordinal directions. The

user’s velocity is also selected from [0-1.5] km/h. The

velocity range was defined according to the average

speed of pedestrians when walking into a department

store. Initially, the velocity and direction of the mobile

nodes were selected at random.

The users’ movement direction was set towards the

coverage area of a particular fog node (FN5 in this paper)

with predefined probability over the simulation process

to create overloading at that node in order to facilitate the

evaluation of the performance of the proposed method

under the overloading situation.

Each mobile user submits 500 requests during the

simulation process (20000 ms). As a result, a total

number of 27,000 requests are submitted by the mobile

nodes. It was assumed that each mobile node has a sensor

and an actor. Each sensor generates a request and sends

it to a higher layer, i.e. the mobile node. The time interval

between submitting two consequent requests by a sensor

is randomly selected from [10-15] ms. The user’s

location in the mobile node is updated every 1 second

(∆1= 1𝑠). Also, the length of the time interval to perform

the task placement algorithm in each fog node is taken as

15 milliseconds (∆2= 15 𝑚𝑠).
The execution deadline of delay-sensitive requests, i.e.

the maximum amount of time for the difference between

the time the request was sent in the sensor and the time

the response was received in the actor, was randomly

selected from [250-750] ms for each request. The

simulation parameters are presented in Table IV.

Table IV. Simulation parameters.

Value Parameter

9

N

54 M

500 #𝐴(𝑖𝑑, 𝑈𝑗,𝑡𝑘) for each
jU

[10-15] ms Time interval of request

submission

1000 ms
1

15 ms
2

[0-1.5] km/h 1,2, ,jVel j M

{north, east, south, west,

northeast, southeast,

southwest, northwest}

 1,2, ,jDir j M

[0-1440]*[0-1440]m2 1, 2, ,jLoc j M

[250-750] ms 𝐷𝐴(𝑖𝑑, 𝑈𝑗,𝑡𝑘)

20 Z

80 W

https://en.wikipedia.org/wiki/North
https://en.wikipedia.org/wiki/East
https://en.wikipedia.org/wiki/South
https://en.wikipedia.org/wiki/West

Tabriz Journal of Electrical Engineering (TJEE), vol. 54, no. 1, Spring 2024 Serial no. 107

107

5.2. Adjusting the threshold

As noted in section 4, the number of failed requests

during the simulation was used to calculate the thresholds

Ө’ and γ. Fig. 4 shows the value of Ө and the number of

failed requests in the fog nodes during a simulation run.

To determine the Ө’ and γ. thresholds, the values of Ө

and 𝑇𝑄(𝑖,𝑡𝑘) were recorded when the number of failed

requests in the fog node is between 100 and 150,

respectively. Then, in each run the median of recorded

values of Ө was calculated. Finally, the average of the

medians was chosen as the threshold Ө’ with a value of

5.4 after the simulation process was run 10 times. Also,

the average median of recorded values of 𝑇𝑄(𝑖,𝑡𝑘) was

considered as the threshold γ whose value equals 9.49.

Also, the value of ϵ in Equation (2) is considered to be

0.001.

5.3. Evaluation of the proposed task placement

method

The proposed method was compared with FCFS, Cloud-

only, and the Delay-priority algorithms [19]. In the FCFS

algorithm, requests in the fog node’s queue are serviced

sequentially without any priority. Depending on the

processing power of a fog node (in this paper only CPU

capacity is considered) at any given time interval,

multiple requests can be executed simultaneously. In the

traditional Cloud-only algorithm, all requests are sent to

the cloud and no requests are processed in fog nodes. This

algorithm is based on the traditional cloud-based

implementation of applications. In the Delay-priority

algorithm requests are executed like FCFS and in the

absence of available capacity of fog nodes, delay-tolerant

requests are scheduled in the cloud. In FCFS and Delay-

priority algorithms, the closest fog node is selected to

process the user request.

In the rest of this section, the results are averaged over 10

different runs. Table V presents the mean, best, worst,

and standard deviation percentage of failed requests, as

well as the percentage of delay-sensitive requests that

failed for different algorithms during 10 simulated runs.

As can be seen in Table V, TICC(Ө′,
1 2Δ ,Δ ,γ) algorithm

obtained better results than the other three methods. The

reason for this is the transfer of delay-tolerant requests

considering the entry-exit ratio of requests and the queue

load in fog nodes which leads to the reduction of the

number of requests in the fog node’s queue, so the delay-

sensitive requests are serviced in a shorter time. The role

of predicting users leaving the current fog node areas and

sending their non-executed requests to neighboring fog

nodes cannot be ignored. This eliminates the need to fail

requests due to the mobility of users so that as many

requests would be executed as possible.

Table V. The mean, best, worst, and standard deviation

of the results obtained by each algorithm during 10 runs.

 A
lg

o
rith

m

Failed requests Delay-sensitive failed

requests

Mean Best Worst Std Mean Best Worst Std

FCFS

65.57

9.31

75.88

19.87

90.09

95.06

84.16

3.4

Cloud-

only

39.86 40 39.69 0.11 79.71 80.01 79.39 0.22

Delay-

priority

23.72 26.85 18.87 2.42 45.27 51.59 35.84 4.7

TICC 12.07 13.7 8.09 1.67 23.93 27.01 15.98 3.32

Fig. 4. Normalized values of Ө and the number of failed requests during the simulation in all fog nodes.

Tabriz Journal of Electrical Engineering (TJEE), vol. 54, no. 1, Spring 2024 Serial no. 107

108

Fig. 5 shows the performance of the proposed approach

for mobility management. As shown in Fig. 5, sending

users’ requests to the neighboring fog nodes (before they

leave the current fog node’s coverage area) increases the

acceptance rate of requests and reduces the percentage of

failed requests. Some of the requests that fail due to the

mobility of users can be executed in neighboring nodes.

Forwarding the requests of the mobile user at the

boundary of two fog nodes before the user’s leaving

allows requests to be received and serviced faster at the

destination fog node.

To evaluate the performance of the proposed method in

the case of fog node overloading, the percentage of failed

requests and delay-sensitive failed requests in the

overloaded fog node (FN5) are shown in Fig. 6. As

mentioned earlier, for FN5 to become overloaded during

the simulation process, users move to that node with a 70%

probability. The results in Fig. 6 indicate that in FN5 ,

fewer requests were failed due to TICC(Ө′,
1 2Δ ,Δ ,γ)

algorithm use. Also, according to this figure, a significant

percentage of requests (23.17%) in the FCFS algorithm

were failed in overloading conditions.

Table VI compares the average, best, worst and standard

deviation for response time of requests in the proposed

method with the other three algorithms. Response time

refers to the time difference between the moment a sensor

sends a request and the moment an actor receives the

response. As can be seen, the average response time of

delay-sensitive requests in TICC(Ө′,
1 2Δ ,Δ ,γ) algorithm

is shorter than other methods. Although TICC(Ө′,
1 2Δ ,Δ ,γ)

has a shorter average response time in comparison with

other algorithms, this time is obtained for more number of

requests. The difference between the lengths of delay-

sensitive tasks and the lengths of delay-tolerant ones has

caused the average response time of delay-sensitive

requests to be higher than the average response time of all

requests. As seen in Table VI, this difference is observed

in all four evaluated algorithms.

Fig. 7 shows the percentage of failed requests in TICC(Ө′,

1 2Δ ,Δ ,γ) algorithm compared to FCFS and Delay-priority

algorithms when different values of 10, 15, 20, and 25 (ms)

are selected for the time interval of execution of

scheduling algorithms.

Fig. 5. Performance of the proposed approach for mobility management.

Fig. 6. Percentage of failed requests in fog node 5 using FCFS, Delay- priority and TICC(Ө′,

1 2Δ ,Δ ,γ) algorithms.

Table VI. The mean, best, worst, and standard deviation of the response times obtained by each algorithm for 10 runs.

Algorithm
Failed requests Delay-sensitive failed requests

Mean Best Worst Std Mean Best Worst Std

FCFS

1080.02

976.5

1197.09

71.79 1495.86 13.79.79 1625.45 74.49

Cloud-only 900.05 894.68 904.06 2.78 901.45 896.96 905.69 0.11

Delay-priority 300.33 234.94 373.02 37.36 464.44 323.44 615.08 76.74

TICC 263.84 226.18 346.32 36.38 327.63 241.67 487.44 73.07

12.07

23.93

5.28 6.80

16.68

32.33

10.74
5.94

Failed requests Delay-sensitive failed

requests

Failed requests due to

mobility of users

Failed requests due to

deadline violation

TICC TICC without

23.17

7.87

3.67

11.68

7.79

3.67

FCFS Delay-periorty TICC

Failed requests Delay-sensitive failed requests

Tabriz Journal of Electrical Engineering (TJEE), vol. 54, no. 1, Spring 2024 Serial no. 107

109

Fig. 7. Percentage of failed requests in FCFS, Delay-

priority, and TICC(Ө′,
1 2Δ ,Δ ,γ) algorithms for different

time intervals.

According to Fig. 7, the lowest percentage of failed

requests in all algorithms is when the time interval of 15

ms is selected. For this reason, as mentioned in section 5.1,

the time interval to calculate Ө(Δ2) in each fog node was

taken as 15 ms. In addition, according to Fig. 7, the

proposed algorithm is performed better in comparison

with FCFS and Delay-priority algorithms for different

values of time intervals.

Finally, to determine the statistical differences between

TICC(Ө′,
1 2Δ ,Δ ,γ) and the compared algorithms, the

Friedman test is conducted. To this end, we defined an

objective function that multiplies the average percentage

of failed requests by the average response time obtained

through 10 runs for each algorithm. When the significance

level (𝛼) is set to 0.05, the results of the Friedman test are

presented in Table VII. As seen in Table VII, TICC(Ө′,

1 2Δ ,Δ ,γ) has the smallest mean ranking value which

means it obtains the best overall rank. Also, the obtained

p-value is smaller than the significance level. When the p-

value is greater than the significance level, the difference

is not statistically significant. However, since the p-value

obtained by the Friedman test is less than 0.05, the

compared algorithms are significantly different.

In summary, experimental results show that the proposed

method for task placement in fog computing outperforms

FCFS, Cloud-only, and Delay-priority algorithms in terms

of acceptance rate and average response time of requests.

Table VII. The results of the Friedman test for (𝛼 = 0.05).

Algorithm
Mean

rank
p-value Diff?

FCFS

3.90
2.33e-6 yes Cloud-only 3.10

Delay-priority 2.00

TICC 1.00

6. Conclusion

The issue of user mobility, along with the different latency

requirements of different applications, necessitates the

development of new methods of task placement that can

provide the best possible performance and QoS to mobile

users. This paper proposed an efficient method for task

placement with respect to hierarchical architecture in fog

computing. The proposed method supported user mobility

and was able to handle different requests with different

latency requirements. In the proposed method, the

decision on where to process a request was done

according to the mobility of users, prediction of

overloading in the fog nodes, and the priority of requests.

The experimental results showed that the proposed

method outperforms the FCFS, Cloud-only, and Delay-

priority algorithms in terms of acceptance rate and

response time. Also, compared to the other three methods,

the proposed method performed better in overload

conditions. We aim to improve the proposed formula to

overload prediction, use data mining techniques to

identify users’ mobility patterns, and employ different

scheduling algorithms as future work.

7. References

[1] K. Ashton, “That internet of things thing”, RFID

Journal, vol. 22, no. 7, pp. 97–114, 2009.

[2] M. Bahrami, M. Singhal, “The role of cloud

computing architecture in big data”, Information

granularity, big data, and computational intelligence, pp.

275–295, 2015.

[3] A. Kumari, S. Tanwar, S. Tyagi, N. Kumar, “Fog

computing for healthcare 4.0 environment: Opportunities

and challenges”, Computers & Electrical Engineering,

vol. 72, pp. 1–13, 2018.

[4] M. Mukherjee, L. Shu, D. Wang, “Survey of fog

computing: Fundamental, network applications, and

research challenges”, IEEE Communications Surveys &

Tutorials, vol. 20, no. 3, pp. 1826–1857, 2018.

[5] S. Mostafavi, F. Ahmadi, M. Agha Sarram,

“Reinforcement-Learning-based Foresighted Task

Scheduling in Cloud Computing”, Tabriz Journal of

Electrical Engineering, vol. 50, no. 1, pp. 387-401, 2020

(in persian).

[6] S. Ghasemi-Falavarjani, M.A. Nematbakhsh, B.

Shahgholi Ghahfarokhi, “Multi-Objective Task Allocation

in Offloading to Mobile Cloud”, Tabriz Journal of

Electrical Engineering, vol. 46, no. 4, pp. 217-232, 2017

(in persian).

[7] B. Nair, M.S.B. Somasundaram, “Overload prediction

and avoidance for maintaining optimal working condition

in a fog node”, Computers & Electrical Engineering, vol.

77, pp. 147–162, 2019.

[8] K. Gasmi, K. Dilek, S. Tosun, S. Ozdemir, “A survey

on computation offloading and service placement in fog

computing-based IoT”, The Journal of

Supercomputing, vol. 78, no. 2, pp. 1983-2014, 2022.

[9] O. Skarlat, M. Nardelli, S. Schulte, S. Dustdar,

“Towards qos-aware fog service placement”, In 1st

international conference on Fog and Edge Computing

(ICFEC), 2017, pp. 89-96.

[10] M.Q. Tran, D.T. Nguyen, V.A. Le, D.H. Nguyen,

T.V. Pham, “Task placement on fog computing made

efficient for IoT application provision”, Wireless

Communications and Mobile Computing, pp. 1-17, 2019.

[11] Y. Xia, X. Etchevers, L. Letondeur, T. Coupaye, F.

Desprez, “Combining hardware nodes and software

components ordering-based heuristics for optimizing the

placement of distributed IoT applications in the fog”,

In Proceedings of the 33rd Annual ACM Symposium on

Applied Computing, 2018, pp. 751-760.

Tabriz Journal of Electrical Engineering (TJEE), vol. 54, no. 1, Spring 2024 Serial no. 107

110

[12] F. Khosroabadi, F. Fotouhi-Ghazvini, H Fotouhi,

“Scatter: Service placement in real-time fog-assisted iot

networks”, Journal of Sensor and Actuator Networks, vol.

10, no. 2, pp. 26, 2021.

[13] B.V. Natesha, R.M.R. Guddeti, “Meta-heuristic

based hybrid service placement strategies for two-level

fog computing architecture”, Journal of Network and

Systems Management, vol. 30, no. 3, pp. 47, 2022.

[14] M. Goudarzi, H. Wu, M. Palaniswami, R. Buyya,

“An application placement technique for concurrent IoT

applications in edge and fog computing

environments”, IEEE Transactions on Mobile

Computing, vol. 20, no. 4, pp. 1298-1311, 2020.

[15] B. Kopras, B. Bossy, F. Idzikowski, P. Kryszkiewicz,

H. Bogucka, “Task Allocation for Energy Optimization in

Fog Computing Networks with Latency

Constraints”, IEEE Transactions on

Communications, vol. 70, no. 12, pp. 8229-8243, 2022.

[16] I. Sarkar, M. Adhikari, N. Kumar, S. Kumar,

“Dynamic task placement for deadline-aware IoT

applications in federated fog networks”, IEEE Internet of

Things Journal, vol. 9, no. 2, pp. 1469-1478, 2021.

[17] A. Mseddi, W. Jaafar, H. Elbiaze, W. Ajib, “Joint

container placement and task provisioning in dynamic fog

computing”, IEEE Internet of Things Journal, vol. 6, no.

6, pp. 10028-10040, 2019.

[18] D. Wang, Z. Liu, X. Wang, Y. Lan, “Mobility-aware

task offloading and migration schemes in fog computing

networks”, IEEE Access, vol. 7, pp. 43356-43368, 2019.

[19] M. Peixoto, T. Genez, L.F. Bittencourt, “Hierarchical

scheduling mechanisms in multi-level fog computing”,

IEEE Transactions on Services Computing, vol. 15, no. 5,

pp. 2824-2837, 2021.

[20] S. Sarkar, S. Misra, “Theoretical modelling of fog

computing: a green computing paradigm to support iot

applications”, Iet Networks, vol. 5, no. 2, pp. 23–29, 2016.

[21] H. Gupta, A.V. Dastjerdi, SK. Ghosh, R. Buyya,

“ifogsim: A toolkit for modeling and simulation of

resource management techniques in the internet of things,

edge and fog computing environments”, Software:

Practice and Experience, vol. 47, no. 9, pp. 1275–1296,

2017.

[22] M. Goudarzi, M. Palaniswami, R Buyya, “A

distributed application placement and migration

management techniques for edge and fog computing

environments”, In 2021 16th Conference on Computer

Science and Intelligence Systems (FedCSIS), 2021, pp.

37–56.

